
Comments?
Send comments on the documentation by going
to http://solvnet.synopsys.com, then clicking
“Enter a Call to the Support Center.”

Design Compiler®

User Guide
Version X-2005.09, September 2005

ii

Copyright Notice and Proprietary Information
Copyright © 2005 Synopsys, Inc. All rights reserved. This software and documentation contain confidential and proprietary
information that is the property of Synopsys, Inc. The software and documentation are furnished under a license agreement and
may be used or copied only in accordance with the terms of the license agreement. No part of the software and documentation may
be reproduced, transmitted, or translated, in any form or by any means, electronic, mechanical, manual, optical, or otherwise,
without prior written permission of Synopsys, Inc., or as expressly provided by the license agreement.

Right to Copy Documentation
The license agreement with Synopsys permits licensee to make copies of the documentation for its internal use only.
Each copy shall include all copyrights, trademarks, service marks, and proprietary rights notices, if any. Licensee must
assign sequential numbers to all copies. These copies shall contain the following legend on the cover page:

“This document is duplicated with the permission of Synopsys, Inc., for the exclusive use of
__ and its employees. This is copy number __________.”

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the United States of America.
Disclosure to nationals of other countries contrary to United States law is prohibited. It is the reader’s responsibility to
determine the applicable regulations and to comply with them.

Disclaimer
SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH
REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Registered Trademarks (®)
Synopsys, AMPS, Arcadia, C Level Design, C2HDL, C2V, C2VHDL, Cadabra, Calaveras Algorithm, CATS, CRITIC,
CSim, Design Compiler, DesignPower, DesignWare, EPIC, Formality, HSIM, HSPICE, Hypermodel, iN-Phase, in-Sync,
Leda, MAST, Meta, Meta-Software, ModelTools, NanoSim, OpenVera, PathMill, Photolynx, Physical Compiler, PowerMill,
PrimeTime, RailMill, RapidScript, Saber, SiVL, SNUG, SolvNet, Superlog, System Compiler, Testify, TetraMAX, TimeMill,
TMA, VCS, Vera, and Virtual Stepper are registered trademarks of Synopsys, Inc.

Trademarks (™)
Active Parasitics, AFGen, Apollo, Apollo II, Apollo-DPII, Apollo-GA, ApolloGAII, Astro, Astro-Rail, Astro-Xtalk, Aurora,
AvanTestchip, AvanWaves, BCView, Behavioral Compiler, BOA, BRT, Cedar, ChipPlanner, Circuit Analysis, Columbia,
Columbia-CE, Comet 3D, Cosmos, CosmosEnterprise, CosmosLE, CosmosScope, CosmosSE, Cyclelink, Davinci, DC
Expert, DC Expert Plus, DC Professional, DC Ultra, DC Ultra Plus, Design Advisor, Design Analyzer, Design Vision,
DesignerHDL, DesignTime, DFM-Workbench, Direct RTL, Direct Silicon Access, Discovery, DW8051, DWPCI, Dynamic
Model Switcher, Dynamic-Macromodeling, ECL Compiler, ECO Compiler, EDAnavigator, Encore, Encore PQ, Evaccess,
ExpressModel, Floorplan Manager, Formal Model Checker, FoundryModel, FPGA Compiler II, FPGA Express, Frame
Compiler, Galaxy, Gatran, HANEX, HDL Advisor, HDL Compiler, Hercules, Hercules-Explorer, Hercules-II, Hierarchical

Optimization Technology, High Performance Option, HotPlace, HSIM
plus

, HSPICE-Link, i-Virtual Stepper, iN-Tandem,
Integrator, Interactive Waveform Viewer, Jupiter, Jupiter-DP, JupiterXT, JupiterXT-ASIC, JVXtreme, Liberty,
Libra-Passport, Libra-Visa, Library Compiler, Magellan, Mars, Mars-Rail, Mars-Xtalk, Medici, Metacapture, Metacircuit,
Metamanager, Metamixsim, Milkyway, ModelSource, Module Compiler, MS-3200, MS-3400, Nova Product Family,
Nova-ExploreRTL, Nova-Trans, Nova-VeriLint, Nova-VHDLlint, Optimum Silicon, Orion_ec, Parasitic View, Passport,
Planet, Planet-PL, Planet-RTL, Polaris, Polaris-CBS, Polaris-MT, Power Compiler, PowerCODE, PowerGate, ProFPGA,
ProGen, Prospector, Protocol Compiler, PSMGen, Raphael, Raphael-NES, RoadRunner, RTL Analyzer, Saturn,
ScanBand, Schematic Compiler, Scirocco, Scirocco-i, Shadow Debugger, Silicon Blueprint, Silicon Early Access,
SinglePass-SoC, Smart Extraction, SmartLicense, SmartModel Library, Softwire, Source-Level Design, Star, Star-DC,
Star-MS, Star-MTB, Star-Power, Star-Rail, Star-RC, Star-RCXT, Star-Sim, Star-SimXT, Star-Time, Star-XP, SWIFT,
Taurus, TimeSlice, TimeTracker, Timing Annotator, TopoPlace, TopoRoute, Trace-On-Demand, True-Hspice,
TSUPREM-4, TymeWare, VCS Express, VCSi, Venus, Verification Portal, VFormal, VHDL Compiler, VHDL System
Simulator, VirSim, and VMC are trademarks of Synopsys, Inc.

Service Marks (SM)
MAP-in, SVP Café, and TAP-in are service marks of Synopsys, Inc.

SystemC is a trademark of the Open SystemC Initiative and is used under license.
ARM and AMBA are registered trademarks of ARM Limited.
All other product or company names may be trademarks of their respective owners.

Printed in the U.S.A.

Document Order Number: 36042-000 ZA
Design Compiler User Guide, version X-2005.09

Contents

What’s New in This Release . xvi

About This Manual . xxvi

Customer Support . xxxi

1. Introduction to Design Compiler

Design Compiler and the Design Flow . 1-2

Design Compiler Family . 1-4

DC Expert . 1-5

DC Ultra . 1-6

HDL Compiler Tools . 1-6

DesignWare Library . 1-7

DFT Compiler. 1-7

Module Compiler . 1-7

Power Compiler . 1-7

Design Vision. 1-8

Design Compiler FPGA . 1-8
iii

2. Design Compiler Basics

The High-Level Design Flow . 2-3

Running Design Compiler . 2-6

Design Compiler Modes. 2-7

Design Compiler Interfaces . 2-8

Setup Files . 2-9

Starting Design Compiler. 2-11

Exiting Design Compiler. 2-12

Getting Command Help . 2-13

Using Command Log Files. 2-15

Using the Filename Log File . 2-15

Using Script Files. 2-16

Working with Licenses . 2-16
Listing the Licenses in Use. 2-17
Getting Licenses. 2-17
Releasing Licenses . 2-17

Following the Basic Synthesis Flow . 2-18

A Design Compiler Session Example . 2-25

3. Preparing Design Files for Synthesis

Managing the Design Data . 3-2

Controlling the Design Data . 3-2

Organizing the Design Data. 3-3

Partitioning for Synthesis. 3-4

Partitioning for Design Reuse . 3-5
iv

Keeping Related Combinational Logic Together 3-5

Registering Block Outputs . 3-7

Partitioning by Design Goal . 3-8

Partitioning by Compile Technique. 3-9

Keeping Sharable Resources Together 3-10

Keeping User-Defined Resources With the
Logic They Drive . 3-11

Isolating Special Functions . 3-12

HDL Coding for Synthesis . 3-13

Writing Technology-Independent HDL . 3-14
Inferring Components. 3-14
Using Synthetic Libraries . 3-18
Designing State Machines . 3-21

Using HDL Constructs . 3-22
General HDL Constructs . 3-22
Using Verilog Macro Definitions . 3-27
Using VHDL Port Definitions . 3-28

Writing Effective Code . 3-28
Guidelines for Identifiers. 3-28
Guidelines for Expressions. 3-30
Guidelines for Functions. 3-31
Guidelines for Modules. 3-33

4. Working With Libraries

Selecting a Semiconductor Vendor . 4-2

Understanding the Library Requirements . 4-3

Technology Libraries . 4-3
v

Symbol Libraries . 4-5

DesignWare Libraries . 4-5

Specifying Libraries . 4-6

Specifying Technology Libraries . 4-6
Target Library . 4-7
Link Library. 4-7

Specifying DesignWare Libraries. 4-10

Specifying a Library Search Path. 4-10

Loading Libraries. 4-11

Listing Libraries . 4-11

Reporting Library Contents . 4-12

Specifying Library Objects. 4-12

Directing Library Cell Usage . 4-13

Excluding Cells From the Target Library 4-13

Specifying Cell Preferences. 4-14

Removing Libraries From Memory . 4-16

Saving Libraries. 4-16

5. Working With Designs in Memory

Design Terminology. 5-3

About Designs . 5-3
Flat Designs . 5-3
Hierarchical Designs . 5-3

Design Objects. 5-4
vi

Relationship Between Designs, Instances,
and References. 5-6

Using Reference Objects . 5-7

Design Database Formats. 5-8

Reading Designs . 5-9

Commands for Reading Design Files . 5-10
Using the analyze and elaborate Commands 5-10
Using the read_file Command . 5-12

Using the read_milkyway command . 5-14

Reading HDL Designs . 5-14

Reading .ddc Files . 5-15

Reading .db Files . 5-15

Listing Designs in Memory . 5-16

Setting the Current Design . 5-17

Using the current_design Command . 5-18

Linking Designs . 5-19

Locating Designs by Using a Search Path. 5-21

Changing Design References . 5-22

Listing Design Objects. 5-24

Specifying Design Objects . 5-25

Using a Relative Path. 5-25

Using an Absolute Path . 5-27

Creating Designs. 5-28

Copying Designs . 5-29
vii

Renaming Designs . 5-30

Changing the Design Hierarchy. 5-31

Adding Levels of Hierarchy . 5-31
Grouping Cells Into Subdesigns. 5-32
Grouping Related Components Into Subdesigns 5-34

Removing Levels of Hierarchy . 5-35
Ungrouping Hierarchies Before Optimization 5-36
Ungrouping Hierarchies During Optimization 5-39
Preserving Hierarchical Pin

Timing Constraints During Ungrouping. 5-44

Merging Cells From Different Subdesigns 5-46

Editing Designs . 5-47

Translating Designs From One Technology to Another 5-50

Procedure to Translate Designs. 5-50

Restrictions on Translating Between Technologies 5-51

Removing Designs From Memory . 5-52

Saving Designs . 5-53

Commands to Save Design Files. 5-54
Using the write Command . 5-54
Using the write_milkyway Command 5-55

Saving Designs in .ddc Format . 5-55

Saving Designs in the .db Format . 5-56

Converting From .db Format to .ddc Format 5-57

Ensuring Name Consistency Between the
Design Database and the Netlist . 5-57
Naming Rules Section of the .synopsys_dc.setup File 5-57
viii

Using the define_name_rules -map Command 5-58
Resolving Naming Problems in the Flow 5-59

Working With Attributes . 5-62

Setting Attribute Values . 5-63
Using an Attribute-Specific Command 5-64
Using the set_attribute Command . 5-64

Viewing Attribute Values . 5-65

Saving Attribute Values . 5-66

Defining Attributes . 5-66

Removing Attributes. 5-66

The Object Search Order. 5-68

6. Defining the Design Environment

Defining the Operating Conditions. 6-3

Determining Available Operating Condition Options 6-4

Specifying Operating Conditions . 6-5

Defining Wire Load Models . 6-5

Hierarchical Wire Load Models . 6-7

Determining Available Wire Load Models 6-9

Specifying Wire Load Models and Modes 6-11

Modeling the System Interface . 6-13

Defining Drive Characteristics for Input Ports 6-13
The set_driving_cell Command . 6-14
The set_drive and set_input_transition Commands 6-15

Defining Loads on Input and Output Ports. 6-17

Defining Fanout Loads on Output Ports. 6-18
ix

7. Defining Design Constraints

Setting Design Rule Constraints . 7-3

Setting Transition Time Constraints . 7-4

Setting Fanout Load Constraints . 7-5

Setting Capacitance Constraints . 7-8

Setting Optimization Constraints . 7-9

Setting Timing Constraints. 7-10
Defining a Clock . 7-11
Specifying I/O Timing Requirements 7-14
Specifying Combinational Path Delay Requirements 7-16
Specifying Timing Exceptions . 7-17

Setting Area Constraints . 7-26

Verifying the Precompiled Design . 7-27

8. Optimizing the Design

The Optimization Process . 8-2

Architectural Optimization . 8-2

Logic-Level Optimization . 8-3

Gate-Level Optimization. 8-6

Selecting and Using a Compile Strategy. 8-7

Top-Down Compile. 8-9

Bottom-Up Compile . 8-12

Mixed Compile Strategy. 8-19

Resolving Multiple Instances of a Design Reference 8-20

Uniquify Method. 8-22
x

Compile-Once-Don’t-Touch Method. 8-25

Ungroup Method . 8-27

Preserving Subdesigns . 8-28

Understanding the Compile Cost Function 8-31

Calculating Transition Time Cost . 8-32

Calculating Fanout Cost. 8-32

Calculating Capacitance Cost . 8-33

Calculating Cell Degradation Cost . 8-34

Calculating Maximum Delay Cost . 8-34
Worst Negative Slack Method . 8-34
Critical Range Negative Slack Method. 8-36

Calculating Minimum Delay Cost . 8-37

Calculating Maximum Power Cost . 8-38

Calculating Maximum Area Cost . 8-39

Calculating Minimum Porosity Cost . 8-39

Performing Design Exploration . 8-40

Performing Design Implementation . 8-41

Optimizing Random Logic . 8-41

Optimizing Structured Logic. 8-43

Optimizing High-Performance Designs 8-43
Automatic Ungrouping Using the

compile_ultra command . 8-45

Optimizing for Maximum Performance. 8-47
Creating Path Groups. 8-47
Fixing Heavily Loaded Nets . 8-51
Flattening Logic on the Critical Path. 8-52
xi

Automatically Ungrouping Hierarchies
on the Critical Path . 8-54

Performing a High-Effort Compile. 8-54
Performing a High-Effort Incremental Compile. 8-55

Optimizing for Minimum Area. 8-56
Disabling Total Negative Slack Optimization 8-56
Enabling Boolean Optimization . 8-57
Managing Resource Selection . 8-57
Using Flattening . 8-59
Optimizing Across Hierarchical Boundaries 8-59

Optimizing Data Paths . 8-61

Using DC Ultra Datapath Optimization . 8-61

Datapath Extraction . 8-63

Two Different Datapath Optimization Methods. 8-67

Methodology Flow . 8-70

Datapath Report . 8-73

Commands Specific to DC Ultra Datapath Optimization 8-76

9. Analyzing and Resolving Design Problems

Checking for Design Consistency . 9-2

Analyzing Your Design During Optimization 9-3

Customizing the Compile Log . 9-3

Saving Intermediate Design Databases. 9-6

Analyzing Design Problems. 9-7

Analyzing Timing Problems. 9-8

Resolving Specific Problems. 9-9
xii

Analyzing Cell Delays . 9-9

Finding Unmapped Cells . 9-11

Finding Black Box Cells . 9-12

Finding Hierarchical Cells . 9-12

Disabling Reporting of Scan Chain Violations 9-12

Insulating Interblock Loading . 9-14

Preserving Dangling Logic. 9-14

Preventing Wire Delays on Ports . 9-15

Breaking a Feedback Loop . 9-15

Analyzing Buffer Problems. 9-15
Understanding Buffer Insertion. 9-16
Correcting for Missing Buffers . 9-22
Correcting for Extra Buffers . 9-25
Correcting for Hanging Buffers . 9-26
Correcting Modified Buffer Networks 9-26

Appendix A. Design Example

Design Description . A-2

Setup File . A-12

Default Constraints File . A-13

Compile Scripts . A-16

Appendix B. Basic Commands

Commands for Defining Design Rules . B-2

Commands for Defining Design Environments B-2
xiii

Commands for Setting Design Constraints B-3

Commands for Analyzing and Resolving Design Problems B-5

Appendix C. Predefined Attributes

Glossary

Index
xiv

Preface FIX ME!

This preface includes the following sections:

• What’s New in This Release

• About This Manual

• Customer Support
xv

What’s New in This Release

This section describes the new features, enhancements, and
changes included in Design Compiler version X-2005.09. Unless
otherwise noted, you can find additional information about these
changes later in this book.

XG Mode Enabled by Default

Starting with Design Compiler version X-2005.09, XG mode is
enabled by default. XG mode uses optimized memory management
techniques that increase the tool capacity and can reduce runtime.
XG mode supports only the dctcl command language.

If you attempt to use any of the previous switch combinations that
used to start Design Compiler in dctcl command language—that is,
dc_shell-t or dc_shell -tcl_mode—the tool automatically
starts in XG mode and displays the dc_shell-xg-t> prompt. Table 1
summarizes the different switch combinations for starting Design
Compiler in XG mode and DB mode.
xvi

Preface

If you enter any of the following commands, dc_shell displays an
error message:

dc_shell
dc_shell -dcsh_mode
dc_shell -db_mode

For more information, see the Design Compiler Command-Line
Interface Guide, Chapter 1.

I/O Methodology Changes

Design Compiler version X-2005.09 includes the following I/O
changes.

• Enhanced database format (.ddc)

In XG mode, you must store your design data in a new binary
format called .ddc. This format stores design data in a more
efficient manner than the .db format, enabling increased capacity.
Although you can use the .db format in XG mode, it is not

Table 1 Starting Design Compiler

Mode Command Prompt

XG mode (default)

dctcl command
language only

dc_shell-xg-t
dc-shell -xg_mode
dc_shell -tcl_mode -xg_mode

dc_shell-xg-t>

DB mode

dctcl command
language

dc_shell -db_mode -tcl_mode
dc_shell-t -db_mode

dc_shell-t>

dcsh command
language

dc_shell -db_mode -dcsh_mode dc_shell>
xvii

What’s New in This Release

recommended. To maximize the capacity and performance
improvements offered in XG mode, use the .ddc format rather
than the .db format.

Additionally, to save a design in the .db format, you must use the
xg_force_db option as shown in the following example:

dc_shell-xg-t> write -format db xg_force_db\
design_file.db

Design Compiler then generates the .db file but also displays a
message that this capability will be removed in a future release.
If you do not use the xg_force_db option, Design Compiler
displays an error message.

For more information, see Chapter 5 of this manual.

• Reading and writing the Milkyway database

In XG mode, Design Compiler allows you to read and write a
Milkyway database within Design Compiler for use with other
Synopsys Galaxy platform tools, such as JupiterXT and Astro.
You do this by using the read_milkyway and
write_milkyway commands.

For more information, see the Design Compiler Reference
Manual: Optimization and Timing Analysis, Chapter 7.

Improvements in Quality of Results

Design Compiler version X-2005.09 yields significant improvements
in runtime and quality of results (QoR), compared to version
W-2004.12. These improvements are a result of the following:

• Global optimization technology
xviii

Preface

• Improved XOR sharing

• MUX_OP inference and optimization

• High-Effort Constant Register Removal

• Improved sequential mapper

• Advanced datapath transformations

• Enhanced auto-ungrouping in compile_ultra

• Support for retiming level-sensitive latches

Global Optimization Technology

Design Compiler version X-2005.09 incorporates a global
optimization technology that results in a better timing context. During
optimization, Design Compiler has a global view of the timing of the
entire design, including black boxes. Additionally, the tool considers
the complete critical path across hierarchical boundaries. The tool
can revert to abstract Boolean logic when necessary to apply
aggressive timing strategies.

Improved XOR Sharing

In previous versions of Design Compiler, XOR operations were
typically not shared, leading to greater area than necessary. Design
Compiler version X-2005.09 includes a new sharing algorithm that
collects trees of XORs and shares them; the algorithm is delay
sensitive. This enhancement results in better area.

MUX_OP Inference and Optimization

In Design Compiler version X-2005.09, the
compile_mux_optimization variable (set to true by default) has
been enhanced to automatically infer MUX_OPs for certain case
xix

What’s New in This Release

statements. This enhancement enables improved structuring and
can result in improved area QoR with equal or better delay. By default
Design Compiler dissolves all MUX_OP hierarchies by the end of the
compile flow. You can have Design Compiler retain user-specified
MUX_OP hierarchies by setting the
compile_create_mux_op_hierarchy variable to true.

For more information, see the Design Compiler Reference Manual:
Optimization and Timing Analysis, Chapter 3.

High-Effort Constant Register Removal

In Design Compiler version X-2005.09, when the
compile_seqmap_propagate_high_effort variable is set to
true, Design Compiler analyzes and removes constant registers that
cannot escape their reset state. This results in improved sequential
area reduction. For more information, see the Design Compiler
Reference Manual: Optimization and Timing Analysis, Chapter 3.

Automatic Sequential Area Recovery

Design Compiler version X-2005.09 includes a fast back-end
sequential mapper that does automatic sequential area recovery. It
identifies clusters of registers with similar functionality and timing
and optimizes the area of these register clusters as a whole. In
previous versions, you used the
compile_sequential_area_recovery variable to achieve the
same functionality; when this variable was set to true, the compile
command attempted area reduction by remapping sequential
elements. In version X-2005.09, this variable is obsolete. By default,
the compile command always attempts area reduction by
remapping sequential elements.
xx

Preface

Advanced Datapath Transformations

Design Compiler version X-2005.09 delivers the following
enhancements in datapath extraction.

• Extraction of mixed signed and unsigned operators

Design Compiler version X-2005.09 performs datapath
extraction if both signed and unsigned operators exist in a single
datapath block when you use the compile_ultra flow. This
enhancement delivers better quality of results.

• Extraction of variable shift operators

Design Compiler version X-2005.09 can extract variable shift
operators (<<, >>, <<<, >>> for Verilog and sll, srl, sla, sra,
rol, ror for VHDL) and allow them to be optimized as part of the
datapath when you use the compile_ultra command. To
enable this feature, set the hdlin_use_syn_shifters
variable to true. This enhancement delivers better quality of
results.

For more information, see Chapter 8 of this manual.

Enhanced Auto-Ungrouping in compile_ultra

In XG mode, Design Compiler version X-2005.09, the
compile_ultra command has been enhanced to perform
area-based auto-ungrouping before initial mapping. The tool
estimates the area for unmapped hierarchies and removes small
subdesigns; the goal is to improve area and timing quality of results.
For more information, see Chapter 8 of this manual.
xxi

What’s New in This Release

Support for Retiming Level-Sensitive Latches

In Design Compiler version X-2005.09, the optimize_registers
command has a new option, -latch, that allows you to retime
level-sensitive latches. If a latch directly drives a cell that is identified
as a clock gate, Design Compiler does not move the latch during
retiming. To enable the retiming of these latches, set the
optimize_reg_retime_clock_gating_latches variable to
true. Additionally, you can use the
optimize_reg_max_time_borrow variable to limit the latch time
borrowing globally. For more information, see the Design Compiler
Register Retiming Manual.

Improved Design Modeling

Design Compiler version X-2005.09 has the following improvements
in design modeling:

• Frequency-based maximum capacitance

You can have Design Compiler consider the effect of clock
frequency on the max_capacitance design rule constraint, by
setting the compile_enable_dyn_max_cap variable to true.
Your technology library should be characterized for multiple
frequencies—that is, a max_capacitance value is associated
with each driver pin for each frequency and this information is
captured in a one-dimensional lookup table.

• Clock-based maximum transition

You can have Design Compiler consider the effect of clock
frequency on the max_transition design rule constraint. For
designs with multiple clock domains, use the
set_max_transition command to set themax_transition
attribute on pins in a specific clock group.
xxii

Preface

For more information, see the Design Compiler Reference Manual:
Constraints and Timing, Chapter 2.

Enhanced Usability

Design Compiler version X-2005.09 delivers several enhancements
to the user interface.

Improved check_design Command

In XG mode, the check_design command now generates
warnings for the following cases:

• Constant-driven outputs in the design—that is, an output that is
driven by a logic constant cell or the check_design command
is called post-compile on an originally unused output

• A multidriver net connecting VDD directly to VSS

• A multidriver net with constant drivers

• Designs with no child cells or nets

Additionally, the check_design command has a new option
-multiple_designs that you can use to display multiply
instantiated designs. By default, warning messages related to such
designs are not reported.

Usage of the current_design Command

In XG mode, several commands are enhanced to accept instance
objects—that is, cells at a lower level of hierarchy. You can operate
on hierarchical designs from any level in the design without using the
current_design command. The enhanced commands are listed
below:
xxiii

What’s New in This Release

• Netlist editing commands

These commands are used for incrementally editing a design
that is in memory. Examples are create_cell, create_net,
connect_net, disconnect_net, create_port,
remove_cell, remove_net, remove_port,
remove_unconnected_ports, create_bus, remove_bus,
and report_bus. For a list of enhanced commands, see
Chapter 5 of this manual.

• The ungroup, group, and uniquify commands

For detailed information, see Chapters 5 and 8 of this manual.

• The set_size_only command

In addition to accepting instance objects, the -all_instances
option allows you to set the size_only attribute on a leaf cell
when its parent design is instantiated multiple times.

For more information, see the Design Compiler Reference
Manual: Optimization and Timing Analysis, Chapter 4.

• The change_link command

In addition to accepting instance objects, the -all_instances
option allows you to make link changes for a leaf cell when its
parent design is instantiated multiple times.

For more information, see Chapter 5 of this manual.

Enhanced Formal Verification

In Design Compiler version X-2005.09, the formal verification
functionality provides the following:

• Enhanced automated setup file generation
xxiv

Preface

The default setup file (default.svf) has been enhanced to record
implicit ungrouping operations.

Implicit ungrouping operations can occur in the following cases

- When the compile -ungroup-all or compile
-auto_ungroup is executed

- If a design has an ungroup attribute set on it

- When DesignWare does auto-ungrouping of DesignWare
parts

- When certain user hierarchies are auto-ungrouped for
datapath optimization

• Third-party formal verification link

You can use the set_vsdc command to record setup
information for third-party formal verification tools. The command
records operations in the V-SDC format, which is an ASCII file.
The operations recorded are a subset of those recorded in the
automated setup file: Name change operations, constant register
removal, finite state machine (FSM) recording, and the group,
ungroup, uniquify, and ununiquify operations.

For more information, see the Design Compiler Reference Manual:
Optimization and Timing Analysis, Chapter 6.

New Command-Line Editor Options

In Design Compiler version X-2005.09, the command-line editor
includes new functionality. You can press the Tab key to complete
nested commands and aliases automatically. The command-line
editor is enabled by default. A new command set_cle_options,
xxv

What’s New in This Release

allows you to control the settings of the command-line editor. For
more information, see the Design Compiler Command-Line Interface
Guide, Appendix B.

Known Limitations and Resolved STARs

Information about known problems and limitations, as well as about
resolved Synopsys Technical Action Requests (STARs), is available
in the Design Compiler Release Notes in SolvNet.

To see the Design Compiler Release Notes,

1. Go to the Synopsys Web page at http://www.synopsys.com and
click SolvNet.

2. If prompted, enter your user name and password. (If you do not
have a Synopsys user name and password, follow the
instructions to register with SolvNet.)

3. Click Release Notes in the Main Navigation section (on the left),
click Design Compiler, then click the release you want in the list
that appears at the bottom.

About This Manual

The Design Compiler User Guide provides basic synthesis
information for users of the Design Compiler tools. This manual
describes synthesis concepts and commands, and presents
examples for basic synthesis strategies.
xxvi

Preface

This manual does not cover asynchronous design, I/O pad
synthesis, test synthesis, simulation, physical design techniques
(such as floorplanning or place and route), or back-annotation of
physical design information.

The information presented here supplements the Synopsys
synthesis reference manuals but does not replace them. See other
Synopsys documentation for details about topics not covered in this
manual.

This manual supports version X-2005.09 of the Synopsys synthesis
tools, whether they are running under the UNIX operating system or
the Linux operating system. The main text of this manual describes
UNIX operation.

Unless otherwise specified, all features discussed in this manual are
available in both XG mode and DB mode. Features that are available
only in a particular mode are marked as such.

Additionally, all examples presented in this manual work in both XG
mode and DB mode. When the command syntax is the same in both
XG mode (dctcl command language) and DB mode (dctcl command
language or dcsh command language), the manual provides a single
example, preceded with the dc_shell-xg-t> prompt. When the
command syntax differs, the manual provides different examples, as
appropriate.

• The XG mode (dctcl command language) example is preceded
by the dc_shell-xg-t> prompt.

• The DB mode (dctcl command language) is preceded by the
dc_shell-t> prompt.

• The DB mode (dcsh command language) example is preceded
by the dc_shell> prompt.
xxvii

About This Manual

Audience

This manual is intended for logic designers and engineers who use
the Synopsys synthesis tools with the VHDL or Verilog hardware
description language (HDL). Before using this manual, you should
be familiar with the following topics:

• High-level design techniques

• ASIC design principles

• Timing analysis principles

• Functional partitioning techniques

Related Publications

For additional information about Design Compiler, see

• Synopsys Online Documentation (SOLD), which is included with
the software for CD users or is available to download through the
Synopsys electronic software transfer (EST) system

• Documentation on the Web, which is available through SolvNet
at http://solvnet.synopsys.com

• The Synopsys MediaDocs Shop, from which you can order
printed copies of Synopsys documents, at
http://mediadocs.synopsys.com

You might also want to refer to the documentation for the following
related Synopsys products:

• Automated Chip Synthesis

• Design Budgeting
xxviii

Preface

• Design Vision

• DesignWare components

• DFT Compiler

• Design Compiler FPGA

• Module Compiler

• PrimeTime

• Power Compiler

• HDL Compiler

Also see the following related documents:

• XG Mode User Guide

• Using Tcl With Synopsys Tools

• Synthesis Master Index
xxix

About This Manual

Conventions

The following conventions are used in Synopsys documentation.

Convention Description

Courier Indicates command syntax.

Courier italic Indicates a user-defined value in Synopsys
syntax, such as object_name. (A user-defined
value that is not Synopsys syntax, such as a
user-defined value in a Verilog or VHDL
statement, is indicated by regular text font
italic.)

Courier bold Indicates user input—text you type verbatim—
in Synopsys syntax and examples. (User input
that is not Synopsys syntax, such as a user
name or password you enter in a GUI, is
indicated by regular text font bold.)

[] Denotes optional parameters, such as
pin1 [pin2 ... pinN]

| Indicates a choice among alternatives, such as
low | medium | high
(This example indicates that you can enter one
of three possible values for an option:
low, medium, or high.)

_ Connects terms that are read as a single term
by the system, such as
set_annotated_delay

Control-c Indicates a keyboard combination, such as
holding down the Control key and pressing c.

\ Indicates a continuation of a command line.

/ Indicates levels of directory structure.

Edit > Copy Indicates a path to a menu command, such as
opening the Edit menu and choosing Copy.
xxx

Preface

Customer Support

Customer support is available through SolvNet online customer
support and through contacting the Synopsys Technical Support
Center.

Accessing SolvNet

SolvNet includes an electronic knowledge base of technical articles
and answers to frequently asked questions about Synopsys tools.
SolvNet also gives you access to a wide range of Synopsys online
services including software downloads, documentation on the Web,
and “Enter a Call to the Support Center.”

To access SolvNet,

1. Go to the SolvNet Web page at http://solvnet.synopsys.com.

2. If prompted, enter your user name and password. (If you do not
have a Synopsys user name and password, follow the
instructions to register with SolvNet.)

If you need help using SolvNet, click HELP in the top-right menu bar
or in the footer.
xxxi

Customer Support

Contacting the Synopsys Technical Support Center

If you have problems, questions, or suggestions, you can contact the
Synopsys Technical Support Center in the following ways:

• Open a call to your local support center from the Web by going to
http://solvnet.synopsys.com (Synopsys user name and
password required), then clicking “Enter a Call to the Support
Center.”

• Send an e-mail message to your local support center.

- E-mail support_center@synopsys.com from within North
America.

- Find other local support center e-mail addresses at
http://www.synopsys.com/support/support_ctr.

• Telephone your local support center.

- Call (800) 245-8005 from within the continental United States.

- Call (650) 584-4200 from Canada.

- Find other local support center telephone numbers at
http://www.synopsys.com/support/support_ctr.
xxxii

Preface

1
Introduction to Design Compiler 1

The Design Compiler tool is the core of the Synopsys synthesis
products. Design Compiler optimizes designs to provide the smallest
and fastest logical representation of a given function. It comprises
tools that synthesize your HDL designs into optimized
technology-dependent, gate-level designs. It supports a wide range
of flat and hierarchical design styles and can optimize both
combinational and sequential designs for speed, area, and power.

This chapter includes the following sections:

• Design Compiler and the Design Flow

• Design Compiler Family
1-1

Design Compiler and the Design Flow

Figure 1-1 shows a simplified overview of how Design Compiler fits
into the design flow.

Figure 1-1 Design Compiler and the Design Flow

Constraints
(SDC)

IP DesignWare
Library

Technology
Library

SDF
PDEF

HDL

HDL Compiler

Design Compiler

Optimized netlist

Place & route

Timing & power
analysis

Formal
verification

Back-annotation

Timing

optimization optimization optimization

optimization

Datapath Power

Area Test

synthesis

Timing

closureSymbol
Library
1-2

Chapter 1: Introduction to Design Compiler

You use Design Compiler for logic synthesis, which is the process of
converting a design description written in a hardware description
language such as Verilog or VHDL into an optimized gate-level
netlist mapped to a specific technology library. The steps in the
synthesis process are as follows:

1. The input design files for Design Compiler are often written using
a hardware description language (HDL) such as Verilog or VHDL.

2. Design Compiler uses technology libraries, synthetic or
DesignWare libraries, and symbol libraries to implement
synthesis and to display synthesis results graphically.

During the synthesis process, Design Compiler translates the
HDL description to components extracted from the generic
technology (GTECH) library and DesignWare library. The
GTECH library consists of basic logic gates and flip-flops. The
DesignWare library contains more complex cells such as adders
and comparators. Both the GTECH and DesignWare libraries are
technology independent, that is, they are not mapped to a
specific technology library. Design Compiler uses the symbol
library to generate the design schematic.

3. After translating the HDL description to gates, Design Compiler
optimizes and maps the design to a specific technology library,
known as the target library. The process is constraint driven.
Constraints are the designer’s specification of timing and
environmental restrictions under which synthesis is to be
performed.

4. After the design is optimized, it is ready for test synthesis. Test
synthesis is the process by which designers can integrate test
logic into a design during logic synthesis. Test synthesis enables
designers to ensure that a design is testable and resolve any test
issues early in the design cycle.
1-3

Design Compiler and the Design Flow

The result of the logic synthesis process is an optimized
gate-level netlist, which is a list of circuit elements and their
interconnections.

5. After test synthesis, the design is ready for the place and route
tools, which place and interconnect cells in the design. Based on
the physical routing, the designer can back-annotate the design
with actual interconnect delays; Design Compiler can then
resynthesize the design for more accurate timing analysis.

Design Compiler reads and writes design files in all the standard
electronic design automation (EDA) formats, including the Synopsys
internal database (.ddc and .db) and equation (.eqn) formats. In
addition, Design Compiler provides links to other EDA tools, such as
place and route tools, and to post-layout resynthesis techniques,
such as in-place optimization. These links enable information
sharing, including forward-directed constraints and delays, between
Design Compiler and external tools.

Design Compiler Family

Synopsys provides an integrated RTL synthesis solution. Using
Design Compiler tools, you can

• Produce fast, area-efficient ASIC designs by employing
user-specified gate-array, FPGA, or standard-cell libraries

• Translate designs from one technology to another

• Explore design tradeoffs involving design constraints such as
timing, area, and power under various loading, temperature, and
voltage conditions
1-4

Chapter 1: Introduction to Design Compiler

• Synthesize and optimize finite state machines, including
automatic state assignment and state minimization

• Integrate netlist inputs and netlist or schematic outputs into
third-party environments while still supporting delay information
and place and route constraints

• Create and partition hierarchical schematics automatically

DC Expert

At the core of the Synopsys’ RTL synthesis solution is the DC Expert.
DC Expert is applied to high-performance ASIC and IC designs.

DC Expert provides the following features:

• Hierarchical compile (top down or bottom up)

• Full and incremental compile techniques

• Sequential optimization for complex flip-flops and latches

• Time borrowing for latch-based designs

• Timing analysis

• Buffer balancing (within hierarchical blocks)

• Command-line interface and graphical user interface

• Budgeting, the process of allocating timing and environment
constraints among blocks in a design

• Automated chip synthesis, a set of Design Compiler commands
that fully automate the partitioning, budgeting, and distributed
synthesis flow for large designs
1-5

Design Compiler Family

DC Ultra

The DC Ultra tool is applied to high-performance deep submicron
ASIC and IC designs, where maximum control over the optimization
process is required.

In addition to the DC Expert capabilities, DC Ultra provides the
following features:

• Additional high-effort delay optimization algorithms

• Advanced arithmetic optimization

• Integrated datapath partitioning and synthesis capabilities

• Finite state machine (FSM) optimization

• Advanced critical path resynthesis

• Register retiming, the process by which the tool moves registers
through combinational gates to improve timing

• Support for advanced cell modeling, that is, the cell-degradation
design rule

• Location-based optimization to enable faster timing closure by
tightly linking the logical and physical environments

• Advanced timing analysis

HDL Compiler Tools

The HDL compiler reads HDL files and performs translation and
architectural optimization of the designs. For more information about
the HDL Compiler tools, see the HDL Compiler documentation.
1-6

Chapter 1: Introduction to Design Compiler

DesignWare Library

A DesignWare library is a collection of reusable circuit-design
building blocks (components) that are tightly integrated into the
Synopsys synthesis environment. During synthesis, Design
Compiler selects the right component with the best speed and area
optimization from the DesignWare Library. For more information, see
the DesignWare Library documentation.

DFT Compiler

The DFT Compiler tool is the Synopsys test synthesis solution. DFT
Compiler provides integrated design-for-test capabilities, including
constraint-driven scan insertion during compile. The DFT Compiler
tool is applied to high-performance ASIC and IC designs that utilize
scan test techniques. For more information, see the DFT Compiler
documentation.

Module Compiler

The Module Compiler tool facilitates high-performance ASIC
datapath design. For more information, see the Module Compiler
User Guide.

Power Compiler

The Power Compiler tool offers a complete methodology for power,
including analyzing and optimizing designs for static and dynamic
power consumption. For more information about these power
capabilities, see the Power Compiler User Guide.
1-7

Design Compiler Family

Design Vision

The Design Vision is a graphical user interface (GUI) to the
Synopsys synthesis environment and an analysis tool for viewing
and analysing designs at the generic technology (GTECH) level and
gate level. Design Vision provides menus and dialog boxes for
implementing Design Compiler commands. It also provides
graphical displays, such as design schematics. For more
information, see the Design Vision User Guide and Design Vision
Help.

Design Compiler FPGA

The Design Compiler FPGA tool enables input of FPGA technology
libraries and data formats. It provides FPGA-specific optimization
algorithms with features for high-performance FPGA
implementations. For more information, see the Design Compiler
FPGA User Guide.
1-8

Chapter 1: Introduction to Design Compiler

2
Design Compiler Basics 2

This chapter provides basic information about Design Compiler
functions. The chapter presents both high-level and basic synthesis
design flows. Standard user tasks, from design preparation and
library specification to compile strategies, optimization, and results
analysis, are introduced as part of the basic synthesis design flow
presentation.

This chapter includes the following sections:

• The High-Level Design Flow

• Running Design Compiler

• Following the Basic Synthesis Flow

• A Design Compiler Session Example
2-1

Note:
Even though the following terms have slightly different meanings,
they are often used synonymously in Design Compiler
documentation:

Synthesis is the process that generates a gate-level netlist for an
IC design that has been defined using a Hardware Description
Language (HDL). Synthesis includes reading the HDL source
code and optimizing the design from that description.

Optimization is the step in the synthesis process that attempts to
implement a combination of library cells that best meet the
functional, timing, and area requirements of the design.

Compile is the Design Compiler command and process that
executes the optimization step. After you read in the design and
perform other necessary tasks, you invoke the compile command
to generate a gate-level netlist for the design.
2-2

Chapter 2: Design Compiler Basics

The High-Level Design Flow

In a basic high-level design flow, Design Compiler is used in both the
design exploration stage and the final design implementation stage.
In the exploratory stage, you use Design Compiler to carry out a
preliminary, or default, synthesis. In the design implementation
stage, you use the full power of Design Compiler to synthesize the
design.

Figure 2-1 shows the high-level design flow. The shaded areas
indicate where Design Compiler synthesis tasks occur in the flow.
2-3

The High-Level Design Flow

Figure 2-1 Basic High-Level Design Flow

Functional simulation

HDL coding

No

Yes

Design implementation

Physical design

DONE

No

Yes

No

Yes

Yes

Design exploration

Goal specification

No

Functionally

correct?

Within 15%

goals?
of timing

Met
goals?

Met
goals?
2-4

Chapter 2: Design Compiler Basics

Using the design flow shown in Figure 2-1, you perform the following
steps:

1. Start by writing an HDL description (Verilog or VHDL) of your
design. Use good coding practices to facilitate successful Design
Compiler synthesis of the design.

2. Perform design exploration and functional simulation in parallel.

- In design exploration, use Design Compiler to (a) implement
specific design goals (design rules and optimization
constraints) and (b) carry out a preliminary, “default” synthesis
(using only the Design Compiler default options).

- If design exploration fails to meet timing goals by more than 15
percent, modify your design goals and constraints, or improve
the HDL code. Then repeat both design exploration and
functional simulation.

- In functional simulation, determine whether the design
performs the desired functions by using an appropriate
simulation tool.

- If the design does not function as required, you must modify
the HDL code and repeat both design exploration and
functional simulation.

- Continue performing design exploration and functional
simulation until the design is functioning correctly and is within
15 percent of the timing goals.

3. Perform design implementation synthesis by using Design
Compiler to meet design goals.
2-5

The High-Level Design Flow

After synthesizing the design into a gate-level netlist, verify that
the design meets your goals. If the design does not meet your
goals, generate and analyze various reports to determine the
techniques you might use to correct the problems.

4. After the design meets functionality, timing, and other design
goals, complete the physical design (either in-house or by
sending it to your semiconductor vendor).

Analyze the physical design’s performance by using
back-annotated data. If the results do not meet design goals,
return to step 3. If the results meet your design goals, you are
finished with the design cycle.

Running Design Compiler

This section provides the basic information you need to run Design
Compiler. It includes the following sections:

• Design Compiler Modes

• Design Compiler Interfaces

• Setup Files

• Starting Design Compiler

• Exiting Design Compiler

• Getting Command Help

• Using Command Log Files

• Using Script Files

• Working with Licenses
2-6

Chapter 2: Design Compiler Basics

Design Compiler Modes

Design Compiler provides two modes of operation:

• XG mode

This is the default. XG mode uses optimized memory
management techniques that increase the tool capacity and can
reduce runtime. In XG mode, you use the dctcl command
language to interact with Design Compiler.

• DB mode

This mode uses the original Design Compiler memory
management techniques. In DB mode, you use the dcsh or dctcl
command language to interact with Design Compiler.

In general, dc_shell behaves the same in XG mode and DB mode,
but XG mode can provide you with reduced memory consumption
and runtime.

Unless otherwise specified, all features discussed in this manual are
available in both XG mode and DB mode. Features that are available
only in a particular mode are marked as such.

Additionally, all examples presented in this manual work in both the
dctcl and dcsh command languages. When the command syntax is
the same in both XG mode and DB mode, the manual provides a
single example, preceded by the dc_shell-xg-t> prompt. When the
command syntax differs, the manual provides different examples, as
appropriate.

• A dctcl (XG mode) example is preceded by the dc_shell-xg-t>
prompt.

• A dctcl (DB mode) is preceded by the dc_shell-t> prompt.
2-7

Running Design Compiler

• A dcsh (DB mode) example is preceded by the dc_shell> prompt.

Design Compiler Interfaces

Design Compiler offers two interfaces for synthesis and timing
analysis: the dc_shell command-line interface (or shell) and the
graphical user interface (GUI).The dc_shell command-line interface
is a text-only environment in which you enter commands at the
command-line prompt. Design Vision is the graphical user interface
to the Synopsys synthesis environment; use it for visualizing design
data and analysis results. For information on Design Vision, see the
Design Vision User Guide.

You can interact with the Design Compiler shell by using the following
command languages:

• dctcl, which is based on the tool command language (Tcl) and
includes certain command extensions needed to implement
specific Design Compiler functionality.

• dcsh, which uses a command language specific to Synopsys and
is available only in DB mode. XG mode does not support this
language.

The command languages provide capabilities similar to UNIX
command shells, including variables, conditional execution of
commands, and control flow commands. You can execute Design
Compiler commands in the following ways:

• By entering single commands interactively in the shell

• By running one or more command scripts, which are text files of
commands
2-8

Chapter 2: Design Compiler Basics

• By typing single commands interactively on the console
command line in the Design Vision window.

You can use this approach to supplement the subset of Design
Compiler commands available through the menu interface. For
more information on Design Vision, see the Design Vision User
Guide and Design Vision online Help.

Setup Files

When you invoke Design Compiler, it automatically executes
commands in three setup files. These files have the same file name,
.synopsys_dc.setup, but reside in different directories. The files
contain commands that initialize parameters and variables, declare
design libraries, and so forth.

Design Compiler reads the three .synopsys_dc.setup files from three
directories in the following order:

1. The Synopsys root directory

2. Your home directory
2-9

Running Design Compiler

3. The current working directory (the directory from which you
invoke Design Compiler)

Example 2-1 shows a sample .synopsys_dc.setup file.

Table 2-1 Setup Files

File Location Function

System-wide
.synopsys_dc.setup
file

Synopsys root directory
($SYNOPSYS/admin/
setup)

This file contains system variables
defined by Synopsys and general
Design Compiler setup information for
all users at your site. Only the system
administrator can modify this file.

User-defined
.synopsys_dc.setup
file

User home directory This file contains variables that define
your preferences for the Design
Compiler working environment. The
variables in this file override the
corresponding variables in the
systemwide setup file.

Design-specific
.synopsys_dc.setup
file

Working directory from
which you started Design
Compiler

This file contains project- or
design-specific variables that affect the
optimizations of all designs in this
directory. To use the file, you must
invoke Design Compiler from this
directory. Variables defined in this file
override the corresponding variables in
the user-defined and systemwide setup
files.
2-10

Chapter 2: Design Compiler Basics

Example 2-1 .synopsys_dc.setup File

Define the target technology library, symbol library,
and link libraries
set target_library lsi_10k.db
set symbol_library lsi_10k.sdb
set synthetic_library dw_foundation.sldb
set link_library “* $target_library $synthetic library”
set search_path [concat $search_path ./src]
set designer "Your Name"

Define aliases
alias h history
alias rc “report_constraint -all_violators”

Starting Design Compiler

Table 2-2 lists the ways in which you can start Design Compiler and
the resulting command prompt.

Table 2-2 Starting Design Compiler

Mode Command Prompt

XG mode (the default)

dctcl command
language only

dc_shell-xg-t
dc-shell -xg_mode
dc_shell -tcl_mode -xg_mode

dc_shell-xg-t>

DB mode

dctcl command
language

dc_shell -db_mode -tcl_mode
dc_shell-t -db_mode

dc_shell-t>

dcsh command
language

dc_shell -db_mode -dcsh_mode dc_shell>
2-11

Running Design Compiler

You can also include numerous options in these command lines,
such as

• -checkout to access licensed features in addition to the default
features checked out by the program

• -wait to set a wait time limit for checking out any additional
licenses

• -f to execute a script file before displaying the initial dc_shell
prompt

• -x to include a dc_shell statement that is executed at startup

For a detailed list of options, see the Design Compiler Command
Line Interface Guide and the man pages for dc_shell.

At startup, dc_shell does the following tasks:

1. Creates a command log file.

2. Reads and executes the .synopsys_dc.setup files

3. Executes any script files or commands specified by the -x and
-f options, respectively, on the command line

4. Displays the program header and dc_shell prompt in the window
from which you invoked dc_shell. The program header lists all
features for which your site is licensed.

Exiting Design Compiler

You can exit Design Compiler at any time and return to the operating
system.
2-12

Chapter 2: Design Compiler Basics

Note:
By default, dc_shell saves the session information in the
command.log file. However, if you change the name of the
sh_command_log_file (dctcl command language) or
command_log_file variable (dcsh command language) after
you start the tool, session information might be lost.

Also, dc_shell does not automatically save the designs loaded in
memory. If you want to save these designs before exiting, use the
write command. For example,

dc_shell-xg-t> write -format ddc -hierarchy -output \
my_design.ddc

To exit dc_shell, do one of the following:

• Enter quit.

• Enter exit.

• Press Control-d, if you are running Design Compiler in interactive
mode and the tool is busy.

When you exit dc_shell, text similar to the following appears (the
memory and the CPU numbers reflect your actual usage):

Memory usage for this session 1373 Kbytes.
CPU usage for this session 4 seconds.

Thank you ...

Getting Command Help

Design Compiler provides three levels of command help:

• A list of commands
2-13

Running Design Compiler

• Command usage help

• Topic help

To get a list of all dc_shell commands, enter one of the following
commands (depending on your command language):

dc_shell-xg-t> help

dc_shell> list -commands

In dctcl, the help command without options displays the commands
with their command summaries.

To get help about a particular dc_shell command, enter the
command name with the -help option. The syntax is

dc_shell-xg-t> command_name -help

To get topic help in dc_shell, enter

dc_shell-xg-t> man topic

where topic is the name of a shell command, variable, or variable
group.

Using the man command (or help command in dcsh), you can
display the man pages for the topic while you are interactively
running Design Compiler.
2-14

Chapter 2: Design Compiler Basics

Using Command Log Files

The command log file records the dc_shell commands processed by
Design Compiler, including setup file commands and variable
assignments. By default, Design Compiler writes the command log
to a file called command.log in the directory from which you invoked
dc_shell.

You can change the name of the command.log file by using the
command_log_file variable (dcsh command language) or
sh_command_log_file variable (dctcl command language) in the
.synopsys_dc.setup file. You should make any changes to these
variables before you start Design Compiler. If your user-defined or
project-specific .synopsys_dc.setup file does not contain either
variable, Design Compiler automatically creates the command.log
file.

Each Design Compiler session overwrites the command log file. To
save a command log file, move it or rename it. You can use the
command log file to

• Produce a script for a particular synthesis strategy

• Record the design exploration process

• Document any problems you are having

Using the Filename Log File

By default, Design Compiler writes the log of filenames that it has
read to the filename log file in the directory from which you invoked
dc_shell. You can use the filename log file to identify data files
2-15

Running Design Compiler

needed to reproduce an error in case Design Compiler terminates
abnormally. You specify the name of the filename log file with the
filename_log_file variable in the .synopsys_dc.setup file.

Using Script Files

You can create a command script file by placing a sequence of
dc_shell commands in a text file. Any dc_shell command can be
executed within a script file.

In dcsh, comments are enclosed between /* and */. For example,

/* This is a comment */

In dctcl, a “#” at the beginning of a line denotes a comment. For
example,

This is a comment

To execute a script file, use one of the following commands:

• include (in dcsh)

• source (in dctcl)

When a script finishes processing, dc_shell returns a value of 1 if the
script ran successfully or a value of 0 if the script failed.

For more information about script files, see the Design Compiler
Command-Line Interface Guide.

Working with Licenses

In working with licenses, you need to determine what licenses are in
use and know how to obtain and release licenses.
2-16

Chapter 2: Design Compiler Basics

Listing the Licenses in Use

Before you check out a license, use the license_users command
to determine which licenses are already in use. For example,

dc_shell-xg-t> license_users
bill@eng1 Design-Compiler
matt@eng2 Design-Compiler, DC-Ultra-Opt
2 users listed.

Getting Licenses

When you invoke Design Compiler, the Synopsys Common
Licensing software automatically checks out the appropriate license.
For example, if you read in an HDL design description, Synopsys
Common Licensing checks out a license for the appropriate HDL
compiler.

If you know the tools and interfaces you need, you can use the
get_license command to check out those licenses. This ensures
that each license is available when you are ready to use it. For
example,

dc_shell-xg-t> get_license HDL-Compiler

Once a license is checked out, it remains checked out until you
release it or exit dc_shell.

Releasing Licenses

To release a license that is checked out to you, use the
remove_license command. For example,

dc_shell-xg-t> remove_license HDL-Compiler
2-17

Running Design Compiler

Following the Basic Synthesis Flow

Figure 2-2 shows the basic synthesis flow. You can use this
synthesis flow in both the design exploration and design
implementation stages of the high-level design flow discussed
previously.

Also listed in Figure 2-2 are the basic dc_shell commands that are
commonly used in each step of the basic flow. For example, the
commands analyze, elaborate, and read_file are used in the
step that reads design files into memory. All the commands shown in
Figure 2-2 can take options, but no options are shown in the figure.

Note:
Under “Select Compile Strategy,” top down and bottom up are not
commands. They refer to two commonly used compile strategies
that use different combinations of commands.

Following Figure 2-2 is a discussion of each step in the flow,
including a reference to the chapter in this manual where you can
find more information.
2-18

Chapter 2: Design Compiler Basics

Figure 2-2 Basic Synthesis Flow

Define

Select

design environment

compile strategy

Set
design constraints

Optimize the design

Analyze and resolve
design problems

Read design

Save the
design database

Design rule constraints

Design optimization constraints

Specify libraries

Library objects

Develop HDL files

link_library

analyze

read_file
elaborate

set_operating_conditions
set_wire_load_model
set_drive
set_driving_cell
set_load
set_fanout_load

Top down
Bottom up

set_max_transition
set_max_fanout
set_max_capacitance

create_clock
set_clock_latency
set_propagated_clock
set_clock_uncertainty
set_clock_transition

compile

check_design
report_area
report_constraint
report_timing

write

target_library
symbol_library
synthetic_library

set_input_delay

set_min_library

set_max_area
set_output_delay
2-19

Following the Basic Synthesis Flow

The basic synthesis flow consists of the following steps:

1. Develop HDL Files

The input design files for Design Compiler are often written using a
hardware description language (HDL) such as Verilog or VHDL.
These design descriptions need to be written carefully to achieve the
best synthesis results possible. When writing HDL code, you need to
consider design data management, design partitioning, and your
HDL coding style. Partitioning and coding style directly affect the
synthesis and optimization processes.

Note:
This step is included in the flow, but it is not actually a Design
Compiler step. You do not create HDL files with the Design
Compiler tools.

See Chapter 3, “Preparing Design Files for Synthesis.”

2. Specify Libraries

You specify the link, target, symbol, and synthetic libraries for Design
Compiler by using the link_library, target_library,
symbol_library, and synthetic_library commands.

The link and target libraries are technology libraries that define the
semiconductor vendor’s set of cells and related information, such as
cell names, cell pin names, delay arcs, pin loading, design rules, and
operating conditions.

The symbol library defines the symbols for schematic viewing of the
design. You need this library if you intend to use the Design Vision
GUI.
2-20

Chapter 2: Design Compiler Basics

In addition, you must specify any specially licensed DesignWare
libraries by using the synthetic_library command. (You do not
need to specify the standard DesignWare library.)

See Chapter 4, “Working With Libraries.”

3. Read Design

Design Compiler can read both RTL designs and gate-level netlists.
Design Compiler uses HDL Compiler to read Verilog and VHDL RTL
designs. It has a specialized netlist reader for reading Verilog and
VHDL gate-level netlists. The specialized netlist reader reads netlists
faster and uses less memory than HDL Compiler.

Design Compiler provides the following ways to read design files:

• The analyze and elaborate commands

• The read_file command

• The read_vhdl and read_verilog commands. These
commands are derived from the read_file -format VHDL
and read_file -format verilog commands.

See Chapter 5, “Working With Designs in Memory.” For detailed
information on the recommended reading methods, see the HDL
Compiler documentation.

4. Define Design Environment

Design Compiler requires that you model the environment of the
design to be synthesized. This model comprises the external
operating conditions (manufacturing process, temperature, and
voltage), loads, drives, fanouts, and wire load models. It directly
2-21

Following the Basic Synthesis Flow

influences design synthesis and optimization results. You define the
design environment by using the set commands listed under this
step of Figure 2-2.

See Chapter 6, “Defining the Design Environment.”

5. Set Design Constraints

Design Compiler uses design rules and optimization constraints to
control the synthesis of the design. Design rules are provided in the
vendor technology library to ensure that the product meets
specifications and works as intended. Typical design rules constrain
transition times (set_max_transition), fanout loads
(set_max_fanout), and capacitances (set_max_capacitance).
These rules specify technology requirements that you cannot violate.
(You can, however, specify stricter constraints.)

Optimization constraints define the design goals for timing (clocks,
clock skews, input delays, and output delays) and area (maximum
area). In the optimization process, Design Compiler attempts to meet
these goals, but no design rules are violated by the process. You
define these constraints by using commands such as those listed
under this step in Figure 2-2. To optimize a design correctly, you
must set realistic constraints.

Note:
Design constraint settings are influenced by the compile strategy
you choose. Flow steps 5 and 6 are interdependent. Compile
strategies are discussed in step 6.

See Chapter 7, “Defining Design Constraints.”
2-22

Chapter 2: Design Compiler Basics

6. Select Compile Strategy

The two basic compile strategies that you can use to optimize
hierarchical designs are referred to as top down and bottom up.

In the top-down strategy, the top-level design and all its subdesigns
are compiled together. All environment and constraint settings are
defined with respect to the top-level design. Although this strategy
automatically takes care of interblock dependencies, the method is
not practical for large designs because all designs must reside in
memory at the same time.

In the bottom-up strategy, individual subdesigns are constrained and
compiled separately. After successful compilation, the designs are
assigned the dont_touch attribute to prevent further changes to
them during subsequent compile phases. Then the compiled
subdesigns are assembled to compose the designs of the next
higher level of the hierarchy (any higher-level design can also
incorporate unmapped logic), and these designs are compiled. This
compilation process is continued up through the hierarchy until the
top-level design is synthesized. This method lets you compile large
designs because Design Compiler does not need to load all the
uncompiled subdesigns into memory at the same time. At each
stage, however, you must estimate the interblock constraints, and
typically you must iterate the compilations, improving these
estimates, until all subdesign interfaces are stable.

Each strategy has its advantages and disadvantages, depending on
your particular designs and design goals. You can use either strategy
to process the entire design, or you can mix strategies, using the
most appropriate strategy for each subdesign.
2-23

Following the Basic Synthesis Flow

Note:
The compile strategy you choose affects your choice of design
constraints and the values you set. Flow steps 5 and 6 are
interdependent. Design constraints are discussed in step 5.

See Chapter 8, “Optimizing the Design.”

7. Optimize the Design

You use the compile command to invoke the Design Compiler
synthesis and optimization processes. Several compile options are
available. In particular, the map_effort option can be set to low,
medium, or high.

In a preliminary compile, when you want to get a quick idea of design
area and performance, you set map_effort to low. In a default
compile, when you are performing design exploration, you use the
medium map_effort option. Because this option is the default, you
do not need to specify map_effort in the compile command. In a
final design implementation compile, you might want to set
map_effort to high. You should use this option judiciously,
however, because the resulting compile process is CPU intensive.
Often setting map_effort to medium is sufficient.

See Chapter 8, “Optimizing the Design.”

8. Analyze and Resolve Design Problems

Design Compiler can generate numerous reports on the results of a
design synthesis and optimization, for example, area, constraint, and
timing reports. You use reports to analyze and resolve any design
problems or to improve synthesis results. You can use the
check_design command to check the synthesized design for
consistency. Other check_ commands are available.
2-24

Chapter 2: Design Compiler Basics

See Chapter 9, “Analyzing and Resolving Design Problems.”

9. Save the Design Database

You use the write command to save the synthesized designs.
Remember that Design Compiler does not automatically save
designs before exiting.

You can also save in a script file the design attributes and constraints
used during synthesis. Script files are ideal for managing your design
attributes and constraints.

See the section “Exiting Design Compiler” on page 2-12 and see the
chapters on using script files in the Design Compiler Command-Line
Interface Guide.

A Design Compiler Session Example

Example 2-2 on page 2-26 shows a simple dcsh script that performs
a top-down compile run (Example 2-3 on page 2-27 shows the same
script in dctcl syntax). It uses the basic synthesis flow. The script
contains comments that identify each of the steps in the flow. Some
of the script command options and arguments have not yet been
explained in this manual. Nevertheless, from the previous discussion
of the basic synthesis flow, you can begin to understand this example
of a top-down compile. The remaining chapters will help you
understand these commands in detail.

Note:
Only the set_driving_cell command is not discussed in the
section on basic synthesis design flow. The
set_driving_cell command is an alternative way to set the
external drives on the ports of the design to be synthesized.
2-25

A Design Compiler Session Example

Example 2-2 Top-Down Compile Script in dcsh

/* specify the libraries */
target_library = my_lib.db
symbol_library = my_lib.sdb
link_library = "*" + target_library

/* read the design */
read_file -format verilog Adder16.v

/* define the design environment */
set_operating_conditions WCCOM
set_wire_load_model "10x10"
set_load 2.2 sout
set_load 1.5 cout
set_driving_cell -lib_cell FD1 all_inputs()
set_drive 0 clk

/* set the optimization constraints */
create_clock clk -period 10
set_input_delay -max 1.35 -clock clk {ain, bin}
set_input_delay -max 3.5 -clock clk cin
set_output_delay -max 2.4 -clock clk cout
set_max_area 0

/* map and optimize the design */
compile

/* analyze and debug the design */
report_constraint -all_violators
report_area

/* save the design database */
write -format db -hierarchy -output Adder16.db
2-26

Chapter 2: Design Compiler Basics

Example 2-3 Top-Down Compile Script in dctcl

/* specify the libraries */
set target_library my_lib.db
set symbol_library my_lib.sdb
set link_library [list "*" $target_library]

/* read the design */
read_verilog Adder16.v

/* define the design environment */
set_operating_conditions WCCOM
set_wire_load_model "10x10"
set_load 2.2 sout
set_load 1.5 cout
set_driving_cell -lib_cell FD1 [all_inputs]
set_drive 0 clk

/* set the optimization constraints */
create_clock clk -period 10
set_input_delay -max 1.35 -clock clk {ain bin}
set_input_delay -max 3.5 -clock clk cin
set_output_delay -max 2.4 -clock clk cout
set_max_area 0

/* map and optimize the design */
compile

/* analyze and debug the design */
report_constraint -all_violators
report_area

/* save the design database */
write -format ddc -hierarchy -output Adder16.ddc

You can execute these commands in any of the following ways:

• Enter dc_shell and type each command in the order shown in the
example.

• Enter dc_shell and execute the script file, using the source
command (dctcl) or the include command (dcsh).
2-27

A Design Compiler Session Example

For example, if you are running Design Compiler and the script is
in a file called run.scr, you can execute the script file by entering
one of the following commands (depending on your command
language):

dc_shell-xg-t> source run.tcl

dc_shell> include run.scr

• Run the script from the UNIX command line by using the -f
option of the dc_shell command.

For example, if the script is in a file called run.scr, you can invoke
Design Compiler and execute the script file from the UNIX prompt
by entering one of the following commands (depending on your
command language):

% dc_shell-xg-t -f run.tcl

% dc_shell -f run.scr

% dc_shell-t -f run.scr
2-28

Chapter 2: Design Compiler Basics

3
Preparing Design Files for Synthesis 3

Designs (that is, design descriptions) are stored in design files.
Design files must have unique names. If a design is hierarchical,
each subdesign refers to another design file, which must also have
a unique name. Note, however, that different design files can contain
subdesigns with identical names.

This chapter contains the following sections:

• Managing the Design Data

• Partitioning for Synthesis

• HDL Coding for Synthesis
3-1

Managing the Design Data

Use systematic organizational methods to manage the design data.
Two basic elements of managing design data are design data control
and data organization.

Controlling the Design Data

As new versions of your design are created, you must maintain some
archival and record keeping method that provides a history of the
design evolution and that lets you restart the design process if data
is lost. Establishing controls for data creation, maintenance,
overwriting, and deletion is a fundamental design management
issue. Establishing file-naming conventions is one of the most
important rules for data creation. Table 3-1 lists the recommended
file name extensions for each design data type

Table 3-1 File Name Extensions

Design data type Extension Description

Design source code .v Verilog

.vhd VHDL

.edif EDIF

Synthesis scripts .con Constraints

.scr Script

Reports and logs .rpt Report

.log Log

Design database .ddc1

1. In DB mode, .db is the internal database format.

Synopsys internal database format
3-2

Chapter 3: Preparing Design Files for Synthesis

Organizing the Design Data

Establishing and adhering to a method of organizing data are more
important than the method you choose. After you place the essential
design data under a consistent set of controls, you can create a
meaningful data organization. To simplify data exchanges and data
searches, designers should adhere to this data organization system.

You can use a hierarchical directory structure to address data
organization issues. Your compile strategy will influence your
directory structure. The following figures show directory structures
based on the top-down compile strategy (Figure 3-1) and the
bottom-up compile strategy (Figure 3-2). For details about compile
strategies, see “Selecting and Using a Compile Strategy” on
page 8-7.

Figure 3-1 Top-Down Compile Directory Structure

Design

src syn

script log unmapped
.con
.scr

.rpt

.log
.ddc

.vhd

.v

work

sim

.synopsys_dc.setup

mapped
.ddc

netlist
.v
.vhd
.edif
3-3

Managing the Design Data

Figure 3-2 Bottom-Up Compile Directory Structure

Partitioning for Synthesis

Partitioning a design effectively can enhance the synthesis results,
reduce compile time, and simplify the constraint and script files.

Partitioning affects block size, and although Design Compiler has no
inherent block size limit, you should be careful to control block size.
If you make blocks too small, you can create artificial boundaries that
restrict effective optimization. If you create very large blocks, compile
runtimes can be lengthy.

Use the following strategies to partition your design and improve
optimization and runtimes:

• Partition for design reuse.

• Keep related combinational logic together.

• Register the block outputs.

Design

src syn sim
.vhd
.v

work

.synopsys_dc.setup

script log mapped netlist
.con
.scr

.rpt

.log
.ddc .v

.vhd

.edif

pass2pass1

unmapped
.ddc

script log mapped netlist
.con
.scr

.rpt

.log
.ddc .v

.vhd

.edif

unmapped
.ddc
3-4

Chapter 3: Preparing Design Files for Synthesis

• Partition by design goal.

• Partition by compile technique.

• Keep sharable resources together.

• Keep user-defined resources with the logic they drive.

• Isolate special functions, such as pads, clocks, boundary scans,
and asynchronous logic.

The following sections describe each of these strategies.

Partitioning for Design Reuse

Design reuse decreases time to market by reducing the design,
integration, and testing effort.

When reusing existing designs, partition the design to enable
instantiation of the designs.

To enable designs to be reused, follow these guidelines during
partitioning and block design:

• Thoroughly define and document the design interface.

• Standardize interfaces whenever possible.

• Parameterize the HDL code.

Keeping Related Combinational Logic Together

By default, Design Compiler cannot move logic across hierarchical
boundaries. Dividing related combinational logic into separate blocks
introduces artificial barriers that restrict logic optimization.
3-5

Partitioning for Synthesis

For best results, apply these strategies:

• Group related combinational logic and its destination register
together.

When working with the complete combinational path, Design
Compiler has the flexibility to merge logic, resulting in a smaller,
faster design. Grouping combinational logic with its destination
register also simplifies the timing constraints and enables
sequential optimization.

• Eliminate glue logic.

Glue logic is the combinational logic that connects blocks.
Moving this logic into one of the blocks improves synthesis
results by providing Design Compiler with additional flexibility.
Eliminating glue logic also reduces compile time, because
Design Compiler has fewer logic levels to optimize.

For example, assume that you have a design containing three
combinational clouds on or near the critical path. Figure 3-3 shows
poor partitioning of this design. Each of the combinational clouds
occurs in a separate block, so Design Compiler cannot fully exploit
its combinational optimization techniques.

Figure 3-3 Poor Partitioning of Related Logic
Critical path
3-6

Chapter 3: Preparing Design Files for Synthesis

Figure 3-4 shows the same design with no artificial boundaries. In
this design, Design Compiler has the flexibility to combine related
functions in the combinational clouds.

Figure 3-4 Keeping Related Logic in the Same Block

Registering Block Outputs

To simplify the constraint definitions, make sure that registers drive
the block outputs, as shown in Figure 3-5.

Figure 3-5 Registering All Outputs

This method enables you to constrain each block easily because

• The drive strength on the inputs to an individual block always
equals the drive strength of the average input drive

Critical path

set_driving_cell my_flop [all_inputs]
set_input_delay 2 -clock CLK
3-7

Partitioning for Synthesis

• The input delays from the previous block always equal the path
delay through the flip-flop

Because no combinational-only paths exist when all outputs are
registered, time budgeting the design and using the
set_output_delay command are easier. Given that one clock
cycle occurs within each module, the constraints are simple and
identical for each module.

This partitioning method can improve simulation performance. With
all outputs registered, a module can be described with only
edge-triggered processes. The sensitivity list contains only the clock
and, perhaps, a reset pin. A limited sensitivity list speeds simulation
by having the process triggered only once in each clock cycle.

Partitioning by Design Goal

Partition logic with different design goals into separate blocks. Use
this method when certain parts of a design are more area and timing
critical than other parts.

To achieve the best synthesis results, isolate the noncritical speed
constraint logic from the critical speed constraint logic. By isolating
the noncritical logic, you can apply different constraints, such as a
maximum area constraint, on the block.

Figure 3-6 shows how to separate logic with different design goals.
3-8

Chapter 3: Preparing Design Files for Synthesis

Figure 3-6 Blocks With Different Constraints

Partitioning by Compile Technique

Partition logic that requires different compile techniques into
separate blocks. Use this method when the design contains highly
structured logic along with random logic.

• Highly structured logic, such as error detection circuitry, which
usually contains large exclusive OR trees, is better suited
to structuring.

• Random logic is better suited to flattening.

For more information on these two compile techniques, see
“Logic-Level Optimization” on page 8-3.

Figure 3-7 shows the logic separated into different blocks.

Non-
critical
path

Critical
path

Goal: Minimum area Goal: Maximum performance
3-9

Partitioning for Synthesis

Figure 3-7 Blocks With Different Compile Techniques

Keeping Sharable Resources Together

Design Compiler can share large resources, such as adders or
multipliers, but resource sharing can occur only if the resources
belong to the same VHDL process or Verilog always block.

For example, if two separate adders have the same destination path
and have multiplexed outputs to that path, keep the adders in one
VHDL process or Verilog always block. This approach allows Design
Compiler to share resources (using one adder instead of two) if the
constraints allow sharing. Figure 3-8 shows possible
implementations of a logic example.

set_flatten trueset_structure true

Error

Circuitry

Random
Logic
3-10

Chapter 3: Preparing Design Files for Synthesis

Figure 3-8 Keeping Sharable Resources in the Same Process

For more information about resource sharing, see the HDL Compiler
documentation.

Keeping User-Defined Resources With the Logic They
Drive

User-defined resources are user-defined functions, procedures, or
macro cells, or user-created DesignWare components. Design
Compiler cannot automatically share or create multiple instances of
user-defined resources. Keeping these resources with the logic they
drive, however, gives you the flexibility to split the load by manually
inserting multiple instantiations of a user-defined resource if timing
goals cannot be achieved with a single instantiation.

Figure 3-9 illustrates splitting the load by multiple instantiation when
the load on the signal PARITY_ERR is too heavy to meet constraints.

A
B

Z

D

CTL

C

+

+

CTL

A
C

B
D

+

Unshared Resources

Shared Resources

Z

3-11

Partitioning for Synthesis

Figure 3-9 Duplicating User-Defined Resources

Isolating Special Functions

Isolate special functions (such as I/O pads, clock generation circuitry,
boundary-scan logic, and asynchronous logic) from the core logic.
Figure 3-10 shows the recommended partitioning for the top level of
the design.

User-Defined
Resource

PARITY_ERR

User-Defined
Resource
3-12

Chapter 3: Preparing Design Files for Synthesis

Figure 3-10 Recommended Top-Level Partitioning

The top level of the design contains the I/O pad ring and a middle
level of hierarchy that contains submodules for the boundary-scan
logic, the clock generation circuitry, the asynchronous logic, and the
core logic. The middle level of hierarchy exists to allow the flexibility
to instantiate I/O pads. Isolation of the clock generation circuitry
enables instantiation and careful simulation of this module. Isolation
of the asynchronous logic helps confine testability problems and
static timing analysis problems to a small area.

HDL Coding for Synthesis

HDL coding is the foundation for synthesis because it implies the
initial structure of the design. When writing your HDL source code,
always consider the hardware implications of the code. A good
coding style can generate smaller and faster designs. This section
provides information to help you write efficient code so that you can
achieve your design target in the shortest possible time.

Top

Core logic

Clock
generation

Boundary

Middle

Pads

scan

Asynchronous
logic
3-13

HDL Coding for Synthesis

Topics include

• Writing technology-independent HDL

• Using HDL constructs

• Writing effective code

Writing Technology-Independent HDL

The goal of high-level design that uses a completely automatic
synthesis process is to have no instantiated gates or flip-flops. If you
meet this goal, you will have readable, concise, and portable
high-level HDL code that can be transferred to other vendors or to
future processes.

In some cases, the HDL Compiler tool requires compiler directives to
provide implementation information while still maintaining
technology independence. In Verilog, compiler directives begin with
the characters // or /*. In VHDL, compiler directives begin with the
two hyphens (--) followed by pragma or synopsys. For more
information, see the HDL Compiler documentation.

The following sections discuss various methods for keeping your
HDL code technology independent.

Inferring Components

HDL Compiler provides the capability to infer the following
components:

• Multiplexers

• Registers

• Three-state drivers
3-14

Chapter 3: Preparing Design Files for Synthesis

• Multibit components

These inference capabilities are discussed in the following pages.
For additional information and examples, see the HDL Compiler
documentation.

Inferring Multiplexers. HDL Compiler can infer a generic
multiplexer cell (MUX_OP) from case statements in your HDL code..
If your target technology library contains at least a 2-to-1 multiplexer
cell, Design Compiler maps the inferred MUX_OPs to multiplexer
cells in the target technology library. Design Compiler determines
the MUX_OP implementation during compile based on the design
constraints. For information about how Design Compiler maps
MUX_OPs to multiplexers, see the Design Compiler Reference
Manual: Optimization and Timing Analysis.

Use the infer_mux compiler directive to control multiplexer
inference. When attached to a block, the infer_mux directive forces
multiplexer inference for all case statements in the block. When
attached to a case statement, the infer_mux directive forces
multiplexer inference for that specific case statement.

Inferring Registers. Register inference allows you to specify
technology-independent sequential logic in your designs. A register
is a simple, 1-bit memory device, either a latch or a flip-flop. A latch
is a level-sensitive memory device. A flip-flop is an edge-triggered
memory device.

HDL Compiler infers a D latch whenever you do not specify the
resulting value for an output under all conditions, as in an
incompletely specified if or case statement. HDL Compiler can also
infer SR latches and master-slave latches.
3-15

HDL Coding for Synthesis

HDL Compiler infers a D flip-flop whenever the sensitivity list of a
Verilog always block or VHDL process includes an edge expression
(a test for the rising or falling edge of a signal). HDL Compiler can
also infer JK flip-flops and toggle flip-flops.

Mixing Register Types. For best results, restrict each Verilog
always block or VHDL process to a single type of register
inferencing: latch, latch with asynchronous set or reset, flip-flop,
flip-flop with asynchronous set or reset, or flip-flop with synchronous
set or reset.

Be careful when mixing rising- and falling-edge-triggered flip-flops in
your design. If a module infers both rising- and falling-edge-triggered
flip-flops and the target technology library does not contain a
falling-edge-triggered flip-flop, Design Compiler generates an
inverter in the clock tree for the falling-edge clock.

Inferring Registers Without Control Signals. For inferring
registers without control signals, make the data and clock pins
controllable from the input ports or through combinational logic. If a
gate-level simulator cannot control the data or clock pins from the
input ports or through combinational logic, the simulator cannot
initialize the circuit, and the simulation fails.

Inferring Registers With Control Signals. You can initialize or
control the state of a flip-flop by using either an asynchronous or a
synchronous control signal.

For inferring asynchronous control signals on latches, use the
async_set_reset compiler directive (attribute in VHDL) to identify
the asynchronous control signals. HDL Compiler automatically
identifies asynchronous control signals when inferring flip-flops.
3-16

Chapter 3: Preparing Design Files for Synthesis

For inferring synchronous resets, use the sync_set_reset
compiler directive (attribute in VHDL) to identify the synchronous
controls.

Inferring Three-State Drivers. Assign the high-impedance value
(1’bz in Verilog, 'Z' in VHDL) to the output pin to have Design
Compiler infer three-state gates. Three-state logic reduces the
testability of the design and makes debugging difficult. Where
possible, replace three-state buffers with a multiplexer.

Never use high-impedance values in a conditional expression. HDL
Compiler always evaluates expressions compared to
high-impedance values as false, which can cause the gate-level
implementation to behave differently from the RTL description.

For additional information about three-state inference, see the HDL
Compiler documentation.

Inferring Multibit Components. Multibit inference allows you to
map multiplexers, registers, and three-state drivers to regularly
structured logic or multibit library cells. Using multibit components
can have the following results:

• Smaller area and delay, due to shared transistors and optimized
transistor-level layout

• Reduced clock skew in sequential gates

• Lower power consumption by the clock in sequential banked
components

• Improved regular layout of the data path
3-17

HDL Coding for Synthesis

Multibit components might not be efficient in the following instances:

• As state machine registers

• In small bused logic that would benefit from single-bit design

You must weigh the benefits of multibit components against the loss
of optimization flexibility when deciding whether to map to multibit or
single-bit components.

Attach the infer_multibit compiler directive to bused signals to
infer multibit components. You can also change between a single-bit
and a multibit implementation after optimization by using the
create_multibit and remove_multibit commands.

For more information about how Design Compiler handles multibit
components, see the Design Compiler Reference Manual:
Optimization and Timing Analysis.

Using Synthetic Libraries

To help you achieve optimal performance, Synopsys supplies a
synthetic library. This library contains efficient implementations for
adders, incrementers, comparators, and signed multipliers.

Design Compiler selects a synthetic component to meet the given
constraints. After Design Compiler assigns the synthetic structure,
you can always change to another type of structure by modifying
your constraints. If you ungroup the synthetic cells or write the netlist
to a text file, however, Design Compiler can no longer recognize the
synthetic component and cannot perform implementation
reselection.
3-18

Chapter 3: Preparing Design Files for Synthesis

The HDL Compiler documentation contains additional information
about using compiler directives to control synthetic component use.
The DesignWare Foundation Library Databook volumes contain
additional information about synthetic libraries and provide examples
of how to infer and instantiate synthetic components.

Example 3-1 and Example 3-2 use the label, ops, map_to_module,
and implementation compiler directives to implement a 32-bit
carry-lookahead adder.

Example 3-1 32-Bit Carry-Lookahead Adder (Verilog)

module add32 (a, b, cin, sum, cout);
 input [31:0] a, b;
 input cin;
 output [31:0] sum;
 output cout;
 reg [33:0] temp;

always @(a or b or cin)
 begin : add1
 /* synopsys resource r0:
 ops = "A1",
 map_to_module = "DW01_add",
 implementation = "cla"; */
 temp = ({1'b0, a, cin} + // synopsys label A1
 {1'b0, b, 1'b1});
 end

assign {cout, sum} = temp[33:1];

endmodule
3-19

HDL Coding for Synthesis

Example 3-2 32-Bit Carry-Lookahead Adder (VHDL)

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;

library synopsys;
use synopsys.attributes.all;

entity add32 is
 port (a,b : in std_logic_vector (31 downto 0);
 cin : in std_logic;
 sum : out std_logic_vector (31 downto 0);
 cout: out std_logic);
end add32;

architecture rtl of add32 is
 signal temp_signed : SIGNED (33 downto 0);
 signal op1, op2, temp : STD_LOGIC_VECTOR (33 downto 0);
 constant COUNT : UNSIGNED := "01";

begin
 infer: process (a, b, cin)
 constant r0 : resource := 0;
 attribute ops of r0 : constant is "A1";

attribute map_to_module of r0 : constant is "DW01_add";
 attribute implementation of r0 : constant is "cla";

 begin
 op1 <= '0' & a & cin;
 op2 <= '0' & b & '1';

temp_signed <= SIGNED(op1) + SIGNED(op2); -- pragma
label A1
 temp <= STD_LOGIC_VECTOR(temp_signed);

 cout <= temp(33);
 sum <= temp(32 downto 1);
 end process infer;
 end rtl;
3-20

Chapter 3: Preparing Design Files for Synthesis

Designing State Machines

You can specify a state machine by using several different formats:

• Verilog

• VHDL

• State table

• PLA

If you use the state_vector and enum compiler directives in your
HDL code, Design Compiler can extract the state table from a netlist.
In the state table format, Design Compiler does not retain the casex,
casez, and parallel_case information. Design Compiler does not
optimize invalid input combinations and mutually exclusive inputs.

Figure 3-11 shows the architecture for a finite state machine.

Figure 3-11 Finite State Machine Architecture

Using an extracted state table provides the following benefits:

• State minimization can be performed.

• Tradeoffs between different encoding styles can be made.

Primary
inputs

Primary
outputs

Next State
vector

Output
logicstate

logic flip-flops

Clock

Present

state
Next

(Mealy machines only)

state
3-21

HDL Coding for Synthesis

• Don’t care conditions can be used without flattening the design.

• Don’t care state codes are automatically derived.

For information about extracting state machines and changing
encoding styles, see the Design Compiler Reference Manual:
Optimization and Timing Analysis.

Using HDL Constructs

The following sections provide information and guidelines about the
following specific HDL constructs:

• General HDL constructs

• Verilog macro definitions

• VHDL port definitions

General HDL Constructs

The information in this section applies to both Verilog and VHDL.

Sensitivity Lists. You should completely specify the sensitivity list
for each Verilog always block or VHDL process. Incomplete
sensitivity lists (shown in the following examples) can result in
simulation mismatches between the HDL and the gate-level design.

Example 3-3 Incomplete Sensitivity List (Verilog)

always @ (A)
 C <= A | B;
3-22

Chapter 3: Preparing Design Files for Synthesis

Example 3-4 Incomplete Sensitivity List (VHDL)

process (A)
 C <= A or B;

Value Assignments. Both Verilog and VHDL support the use of
immediate and delayed value assignments in the RTL code. The
hardware generated by immediate value assignments—
implemented by Verilog blocking assignments (=) and VHDL
variables (:=)—is dependent on the ordering of the assignments.
The hardware generated by delayed value assignments—
implemented by Verilog nonblocking assignments (<=) and VHDL
signals (<=)—is independent of the ordering of the assignments.

For the most intuitive results,

• Use immediate value assignments within sequential Verilog
always blocks or VHDL processes

• Use delayed value assignments within combinational Verilog
always blocks or VHDL processes

if Statements. When an if statement used in a Verilog always block
or VHDL process as part of a continuous assignment does not
include an else clause, Design Compiler creates a latch. The
following examples show if statements that generate latches during
synthesis.

Example 3-5 Incorrect if Statement (Verilog)

if ((a == 1) && (b == 1))
 z = 1;
3-23

HDL Coding for Synthesis

Example 3-6 Incorrect if Statement (VHDL)

if (a = ’1’ and b = ’1’) then
 z <= ’1’;
end if;

case Statements. If your if statement contains more than three
conditions, consider using the case statement to improve the
parallelism of your design and the clarity of your code. The following
examples use the case statement to implement a 3-bit decoder.

Example 3-7 Using the case Statement (Verilog)

case ({a, b, c})
 3’b000: z = 8’b00000001;
 3’b001: z = 8’b00000010;
 3’b010: z = 8’b00000100;
 3’b011: z = 8’b00001000;
 3’b100: z = 8’b00010000;
 3’b101: z = 8’b00100000;
 3’b110: z = 8’b01000000;
 3’b111: z = 8’b10000000;
 default: z = 8’b00000000;
endcase
3-24

Chapter 3: Preparing Design Files for Synthesis

Example 3-8 Using the case Statement (VHDL)

case_value := a & b & c;
CASE case_value IS
 WHEN "000" =>
 z <= "00000001";
 WHEN "001" =>
 z <= "00000010";
 WHEN "010" =>
 z <= "00000100";
 WHEN "011" =>
 z <= "00001000";
 WHEN "100" =>
 z <= "00010000";
 WHEN "101" =>
 z <= "00100000";
 WHEN "110" =>
 z <= "01000000";
 WHEN "111" =>
 z <= "10000000";
 WHEN OTHERS =>
 z <= "00000000";
END CASE;

An incomplete case statement results in the creation of a latch.
VHDL does not support incomplete case statements. In Verilog you
can avoid latch inference by using either the default clause or the
full_case compiler directive.

Although both the full_case directive and the default clause prevent
latch inference, they have different meanings. The full_case directive
asserts that all valid input values have been specified and no default
clause is necessary. The default clause specifies the output for any
undefined input values.

For best results, use the default clause instead of the full_case
directive. If the unspecified input values are don’t care conditions,
using the default clause with an output value of x can generate a
smaller implementation.
3-25

HDL Coding for Synthesis

If you use the full_case directive, the gate-level simulation might not
match the RTL simulation whenever the case expression evaluates
to an unspecified input value. If you use the default clause,
simulation mismatches can occur only if you specified don’t care
conditions and the case expression evaluates to an unspecified input
value.

Constant Definitions. Use the Verilog `define statement or the
VHDL constant statement to define global constants. Keep global
constant definitions in a separate file. Use parameters (Verilog) or
generics (VHDL) to define local constants.

Example 3-9 shows a Verilog code fragment that includes a global
`define statement and a local parameter. Example 3-10 shows a
VHDL code fragment that includes a global constant and a local
generic.

Example 3-9 Using Macros and Parameters (Verilog)

// Define global constant in def_macro.v
‘define WIDTH 128

// Use global constant in reg128.v
reg regfile[WIDTH-1:0];

// Define and use local constant in module foo
module foo (a, b, c);
 parameter WIDTH=128;
 input [WIDTH-1:0] a, b;
 output [WIDTH-1:0] c;
3-26

Chapter 3: Preparing Design Files for Synthesis

Example 3-10 Using Global Constants and Generics (VHDL)

-- Define global constant in synthesis_def.vhd
constant WIDTH : INTEGER := 128;

-- Include global constants
library my_lib;
USE my_lib.synthesis_def.all;

-- Use global constant in entity foo
entity foo1 is
 port (a,b : in std_logic_vector(WIDTH-1 downto 0);
 c: out std_logic_vector(WIDTH-1 downto 0));
end foo;

-- Define and use local constant in entity foo
entity foo is
 generic (WIDTH_VAR : INTEGER := 128);
 port (a,b : in std_logic_vector(WIDTH-1 downto 0);
 c: out std_logic_vector(WIDTH-1 downto 0));
end foo;

Using Verilog Macro Definitions

In Verilog, macros are implemented using the `define statement.
Follow these guidelines for `define statements:

• Use `define statements only to declare constants.

• Keep `define statements in a separate file.

• Do not use nested `define statements.

Reading a macro that is nested more than twice is difficult. To
make your code readable, do not use nested `define statements.

• Do not use `define inside module definitions.

When you use a `define statement inside a module definition, the
local macro and the global macro have the same reference name
but different values. Use parameters to define local constants.
3-27

HDL Coding for Synthesis

Using VHDL Port Definitions

When defining ports in VHDL source code, observe these
guidelines:

• Use the STD_LOGIC and STD_LOGIC_VECTOR packages.

By using STD_LOGIC, you avoid the need for type conversion
functions on the synthesized design.

• Do not use the buffer port mode.

When you declare a port as a buffer, the port must be used as a
buffer throughout the hierarchy. To simplify synthesis, declare the
port as an output, then define an internal signal that drives the
output port.

Writing Effective Code

This section provides guidelines for writing efficient, readable HDL
source code for synthesis. The guidelines cover

• Identifiers

• Expressions

• Functions

• Modules

Guidelines for Identifiers

A good identifier name conveys the meaning of the signal, the value
of a variable, or the function of a module; without this information, the
hardware descriptions are difficult to read.
3-28

Chapter 3: Preparing Design Files for Synthesis

Observe the following naming guidelines to improve the readability
of your HDL source code:

• Ensure that the signal name conveys the meaning of the signal
or the value of a variable without being verbose.

For example, assume that you have a variable that represents the
floating point opcode for rs1. A short name, such as frs1, does
not convey the meaning to the reader. A long name, such as
floating_pt_opcode_rs1, conveys the meaning, but its length
might make the source code difficult to read. Use a name such
as fpop_rs1, which meets both goals.

• Use a consistent naming style for capitalization and to distinguish
separate words in the name.

Commonly used styles include C, Pascal, and Modula.

- C style uses lowercase names and separates words with an
underscore, for example, packet_addr, data_in, and
first_grant_enable.

- Pascal style capitalizes the first letter of the name and first
letter of each word, for example, PacketAddr, DataIn, and
FirstGrantEnable.

- Modula style uses a lowercase letter for the first letter of the
name and capitalizes the first letter of subsequent words, for
example, packetAddr, dataIn, and firstGrantEnable.

Choose one convention and apply it consistently.

• Avoid confusing characters.

Some characters (letters and numbers) look similar and are
easily confused, for example, O and 0 (zero); l and 1 (one).

• Avoid reserved words.
3-29

HDL Coding for Synthesis

• Use the noun or noun followed by verb form for names, for
example, AddrDecode, DataGrant, PCI_interrupt.

• Add a suffix to clarify the meaning of the name.

Table 3-2 shows common suffixes and their meanings.

Guidelines for Expressions

Observe the following guidelines for expressions:

• Use parentheses to indicate precedence.

Expression operator precedence rules are confusing, so you
should use parentheses to make your expression easy to read.
Unless you are using DesignWare resources, parentheses have
little effect on the generated logic. An example of a logic
expression without parentheses that is difficult to read is

Table 3-2 Signal Name Suffixes and Their Meanings

Suffix Meaning

_clk Clock signal

_next Signal before being registered

_n Active low signal

_z Signal that connects to a three-state output

_f Register that uses an active falling edge

_xi Primary chip input

_xo Primary chip output

_xod Primary chip open drain output

_xz Primary chip three-state output

_xbio Primary chip bidirectional I/O
3-30

Chapter 3: Preparing Design Files for Synthesis

bus_select = a ^ b & c~^d|b^~e&^f[1:0];

• Replace repetitive expressions with function calls or continuous
assignments.

If you use a particular expression more than two or three times,
consider replacing the expression with a function or a continuous
assignment that implements the expression.

Guidelines for Functions

Observe these guidelines for functions:

• Do not use global references within a function.

In procedural code, a function is evaluated when it is called. In a
continuous assignment, a function is evaluated when any of its
declared inputs changes.

Avoid using references to nonlocal names within a function
because the function might not be reevaluated if the nonlocal
value changes. This can cause a simulation mismatch between
the HDL description and the gate-level netlist. For example, the
following Verilog function references the nonlocal name byte_sel:

function byte_compare;
 input [15:0] vector1, vector2;
 input [7:0] length;

 begin
 if (byte_sel)
 // compare the upper byte
 else
 // compare the lower byte
 ...
 end
endfunction // byte_compare
3-31

HDL Coding for Synthesis

• Be aware that the local storage for tasks and functions is static.

Formal parameters, outputs, and local variables retain their
values after a function has returned. The local storage is reused
each time the function is called. This storage can be useful for
debugging, but storage reuse also means that functions and
tasks cannot be called recursively.

• Be careful when using component implication.

You can map a function to a specific implementation by using the
map_to_module and return_port_name compiler directives.
Simulation uses the contents of the function. Synthesis uses the
gate-level module in place of the function. When you are using
component implication, the RTL model and the gate-level model
might be different. Therefore, the design cannot be fully verified
until simulation is run on the gate-level design.

The following functionality might require component instantiation
or functional implication:

- Clock-gating circuitry for power savings

- Asynchronous logic with potential hazards

This functionality includes asynchronous logic and
asynchronous signals that are valid during certain states.

- Data-path circuitry

This functionality includes large multiplexers; instantiated wide
banks of multiplexers; memory elements, such as RAM or
ROM; and black box macro cells.

For more information about component implication, see the
HDL Compiler documentation.
3-32

Chapter 3: Preparing Design Files for Synthesis

Guidelines for Modules

Observe these guidelines for modules:

• Avoid using logic expressions when you pass a value through
ports.

The port list can include expressions, but expressions complicate
debugging. In addition, isolating a problem related to the bit field
is difficult, particularly if that bit field leads to internal port
quantities that differ from external port quantities.

• Define local references as generics (VHDL) or parameters
(Verilog). Do not pass generics or parameters into modules.
3-33

HDL Coding for Synthesis

3-34

Chapter 3: Preparing Design Files for Synthesis

4
Working With Libraries 4

This chapter presents basic library information. Design Compiler
uses technology, symbol, and synthetic or DesignWare libraries to
implement synthesis and to display synthesis results graphically. You
must know how to carry out a few simple library commands so that
Design Compiler uses the library data correctly.

This chapter contains the following sections:

• Selecting a Semiconductor Vendor

• Understanding the Library Requirements

• Specifying Libraries

• Loading Libraries

• Listing Libraries

• Reporting Library Contents
4-1

• Specifying Library Objects

• Directing Library Cell Usage

• Removing Libraries From Memory

• Saving Libraries

Selecting a Semiconductor Vendor

One of the first things you must do when designing a chip is to select
the semiconductor vendor and technology you want to use. Consider
the following issues during the selection process:

• Maximum frequency of operation

• Physical restrictions

• Power restrictions

• Packaging restrictions

• Clock tree implementation

• Floorplanning

• Back-annotation support

• Design support for libraries, megacells, and RAMs

• Available cores

• Available test methods and scan styles
4-2

Chapter 4: Working With Libraries

Understanding the Library Requirements

Design Compiler uses these libraries:

• Technology libraries

• Symbol libraries

• DesignWare libraries

This section describes these libraries.

Technology Libraries

Technology libraries contain information about the characteristics
and functions of each cell provided in a semiconductor vendor’s
library. Semiconductor vendors maintain and distribute the
technology libraries.

Cell characteristics include information such as cell names, pin
names, area, delay arcs, and pin loading. The technology library also
defines the conditions that must be met for a functional design (for
example, the maximum transition time for nets). These conditions
are called design rule constraints.

In addition to cell information and design rule constraints, technology
libraries specify the operating conditions and wire load models
specific to that technology.

Design Compiler requires the technology libraries to be in .db format.
In most cases, your semiconductor vendor provides you with .db
formatted libraries. If you are provided with only library source code,
see the Library Compiler documentation for information about
generating technology libraries.
4-3

Understanding the Library Requirements

Design Compiler uses technology libraries for these purposes:

• Implementing the design function

The technology libraries that Design Compiler maps to during
optimization are called target libraries. The target libraries
contain the cells used to generate the netlist and definitions for
the design’s operating conditions.

The target libraries that are used to compile or translate a design
become the local link libraries for the design. Design Compiler
saves this information in the design’s local_link_library
attribute. For information about attributes, see “Working With
Attributes” on page 5-62.

• Resolving cell references

The technology libraries that Design Compiler uses to resolve
cell references are called link libraries.

In addition to technology libraries, link libraries can also include
design files. The link libraries contain the descriptions of cells
(library cells as well as subdesigns) in a mapped netlist.

Link libraries include both local link libraries
(local_link_library attribute) and system link libraries
(link_library variable).

For more information about resolving references, see “Linking
Designs” on page 5-19.
4-4

Chapter 4: Working With Libraries

• Calculating timing values and path delays

The link libraries define the delay models that are used to
calculate timing values and path delays. For information about
the various delay models, see the Library Compiler
documentation.

• Calculating power consumed

For information about calculating power consumption, see the
Power Compiler Reference Manual.

Symbol Libraries

Symbol libraries contain definitions of the graphic symbols that
represent library cells in the design schematics. Semiconductor
vendors maintain and distribute the symbol libraries.

Design Compiler uses symbol libraries to generate the design
schematic. You must use Design Vision to view the design
schematic.

When you generate the design schematic, Design Compiler
performs a one-to-one mapping of cells in the netlist to cells in the
symbol library.

DesignWare Libraries

A DesignWare library is a collection of reusable circuit-design
building blocks (components) that are tightly integrated into the
Synopsys synthesis environment.
4-5

Understanding the Library Requirements

DesignWare components that implement many of the built-in HDL
operators are provided by Synopsys. These operators include +, -, *,
<, >, <=, >=, and the operations defined by if and case statements.

You can develop additional DesignWare libraries at your site by using
DesignWare Developer, or you can license DesignWare libraries
from Synopsys or from third parties. To use licensed DesignWare
components, you need a license key.

Specifying Libraries

You use dc_shell variables to specify the libraries used by Design
Compiler. Table 4-1 lists the variables for each library type as well as
the typical file extension for the library.

Specifying Technology Libraries

To specify technology libraries, you must specify the target library
and link library.

Table 4-1 Library Variables

Library type Variable Default File
extension

Target library target_library {“your_library.db”} .db

Link library link_library {“*”, “your_library.db”} .db

Symbol library symbol_library {“your_library.sdb”} .sdb

DesignWare library synthetic_library {} .sldb
4-6

Chapter 4: Working With Libraries

Target Library

Design Compiler uses the target library to build a circuit. During
mapping, Design Compiler selects functionally correct gates from
the target library. It also calculates the timing of the circuit, using the
vendor-supplied timing data for these gates.

Use the target_library variable to specify the target library.

The syntax for dctcl is

set target_library my_tech.db

The syntax for dcsh is

target_library = my_tech.db

Link Library

Design Compiler uses the link library to resolve references. For a
design to be complete, it must connect to all the library components
and designs it references. This process is called linking the design or
resolving references.

During the linking process, Design Compiler uses the
link_library system variable, the local_link_library
attribute, and the search_path system variable to resolve
references. These variables and attribute are described below:

• link_library variable

The link_library variable specifies a list of libraries and
design files that Design Compiler can use to resolve references.
When you load a design into memory, Design Compiler also
loads all libraries specified in the link_library variable.
4-7

Specifying Libraries

Because the tool loads the libraries while loading the design,
rather than during the link process, the memory usage and
runtime required for loading the design might increase. However,
the advantage is that you know immediately whether your design
can be processed with the available memory.

Note:

In DB mode, the libraries are read in during the link process.

An asterisk in the value of the link_library variable specifies
that Design Compiler should search memory for the reference.

• local_link_library attribute

The local_link_library attribute is a list of design files and
libraries added to the beginning of the link_library variable
during the linking process. Design Compiler searches files in the
local_link_library attribute first when it resolves
references.

• search_path variable

If Design Compiler does not find the reference in the link libraries,
it searches in the directories specified by the search_path
variable, described in “Specifying a Library Search Path” on
page 4-10. For more information on resolving references, see
“Linking Designs” on page 5-19.

The syntax for dctcl is

set link_library {* my_tech.db}

The syntax for dcsh is

link_library = {* my_tech.db}
4-8

Chapter 4: Working With Libraries

Note that you specify the same value for the target library and the link
library (except when you are performing technology translation).

When you specify the files in the link_library variable, consider
that Design Compiler searches these files from left to right when it
resolves references, and it stops searching when it finds a reference.
If you specify the link library as {"*" lsi_10k.db}, the designs in
memory are searched before the lsi_10k library.

Design Compiler uses the first technology library found in the
link_library variable as the main library. It uses the main library
to obtain default values and settings used in the absence of explicit
specifications for operating conditions, wire load selection group,
wire load mode, and net delay calculation. Design Compiler obtains
the following default values and settings from the main library:

• Unit definitions

• Operating conditions

• K-factors

• Wire load model selection

• Input and output voltage

• Timing ranges

• RC slew trip points

• Net transition time degradation tables

If other libraries have units different from the main library units,
Design Compiler converts all units to those that the main library
uses.
4-9

Specifying Libraries

Specifying DesignWare Libraries

You do not need to specify the standard synthetic library,
standard.sldb, that implements the built-in HDL operators. The
software automatically uses this library.

If you are using additional DesignWare libraries, you must specify
these libraries by using the synthetic_library variable (for
optimization purposes) and the link_library variable (for cell
resolution purposes).

For more information about using DesignWare libraries, see the
DesignWare User Guide.

Specifying a Library Search Path

You can specify the library location by using either the complete path
or only the file name. If you specify only the file name, Design
Compiler uses the search path defined in the search_path
variable to locate the library files. By default, the search path
includes the current working directory and $SYNOPSYS/libraries/
syn. Design Compiler looks for the library files, starting with the
leftmost directory specified in the search_path variable, and uses
the first matching library file it finds.

For example, assume that you have technology libraries named
my_lib.db in both the lib directory and the vhdl directory. If the search
path contains (in order) the lib directory, the vhdl directory, and the
default search path, Design Compiler uses the my_lib.db file found in
the lib directory, because it encounters the lib directory first.

You can use the which command to see which library files Design
Compiler finds (in order).
4-10

Chapter 4: Working With Libraries

dc_shell-xg-t> which my_lib.db
/usr/lib/my_lib.db, /usr/vhdl/my_lib.db

Loading Libraries

Design Compiler uses binary libraries (.db format for technology
libraries and .sdb format for symbol libraries) and automatically loads
these libraries when needed.

If your library is not in the appropriate binary format, use the
read_lib command to compile the library source. The read_lib
command requires a Library-Compiler license.

To manually load a binary library, use the read_file command.

dc_shell-xg-t> read_file my_lib.db
dc_shell-xg-t> read_file my_lib.sdb

Listing Libraries

Design Compiler refers to a library loaded in memory by its name.
The library statement in the library source defines the library name.

To list the names of the libraries loaded in memory, use the
list_libs command.

dc_shell-xg-t> list_libs
Logical Libraries:
Library File Path
------- ---- ----
my_lib my_lib.db /synopsys/libraries
my_symbol_lib my_lib.sdb /synopsys/libraries
4-11

Loading Libraries

Reporting Library Contents

Use the report_lib command to report the contents of a library.
The report_lib command can report the following data:

• Library units

• Operating conditions

• Wire load models

• Cells (including cell exclusions, preferences, and other attributes)

Specifying Library Objects

Library objects are the vendor-specific cells and their pins.

The Design Compiler naming convention for library objects is

[file:]library/cell[/pin]

file

The file name of a technology library followed by a colon (:). If you
have multiple libraries loaded in memory with the same name,
you must specify the file name.

library

The name of a library in memory, followed by a slash (/).

cell

The name of a library cell.

pin

The name of a cell’s pin.
4-12

Chapter 4: Working With Libraries

For example, to set the dont_use attribute on the AND4 cell in the
my_lib library, enter

dc_shell-xg-t> set_dont_use my_lib/AND4
1

To set the disable_timing attribute on the Z pin of the AND4 cell
in the my_lib library, enter one of the following commands
(depending on your command language):

dc_shell-xg-t> set_disable_timing [get_pins my_lib/AND4/Z]
1

dc_shell> set_disable_timing find(pin, my_lib/AND4/Z)
1

Directing Library Cell Usage

When Design Compiler maps a design to a technology library, it
selects components (library cells) from that library. You can influence
the choice of components (library cells) by

• Excluding cells from the target library

• Specifying cell preferences

Excluding Cells From the Target Library

Use the set_dont_use command to exclude cells from the target
library. Design Compiler does not use these excluded cells during
optimization.
4-13

Directing Library Cell Usage

This command affects only the copy of the library that is currently
loaded into memory and has no effect on the version that exists on
disk. However, if you save the library, the exclusions are saved and
the cells are permanently disabled.

For example, to prevent Design Compiler from using the high-drive
inverter INV_HD, enter

dc_shell-xg-t> set_dont_use MY_LIB/INV_HD
1

Use the remove_attribute command to reinclude excluded cells
in the target library.

dc_shell-xg-t> remove_attribute MY_LIB/INV_HD dont_use
MY_LIB/INV_HD

Specifying Cell Preferences

Use the set_prefer command to indicate preferred cells. You can
issue this command with or without the -min option.

Use the command without the -min option if you want Design
Compiler to prefer certain cells during the initial mapping of the
design.

• Set the preferred attribute on particular cells to override the
default cell identified by the library analysis step. This step occurs
at the start of compilation to identify the starting cell size for the
initial mapping.

• Set the preferred attribute on cells if you know the preferred
starting size of the complex cells or the cells with complex timing
arcs (such as memories and banked components).
4-14

Chapter 4: Working With Libraries

You do not normally need to set the preferred attribute as part of your
regular compile methodology because a good starting cell is
automatically determined during the library analysis step.

Because nonpreferred gates can be chosen to meet optimization
constraints, the effect of preferred attributes might not be noticeable
after optimization.

For example, to set a preference for the low-drive inverter INV_LD,
enter

dc_shell-xg-t> set_prefer MY_LIB/INV_LD
1

Use the remove_attribute command to remove cell preferences.

dc_shell-xg-t> remove_attribute MY_LIB/INV_LD preferred
MY_LIB/INV_LD

Use the -min option if you want Design Compiler to prefer fewer (but
larger-area) buffers or inverters when it fixes hold-time violations.
Normally, Design Compiler gives preference to smaller cell area over
the number of cells used in a chain of buffers or inverters. You can
change this preference by using the -min option, which tells Design
Compiler to minimize the number of buffers or inverters by using
larger area cells.

For example, to set a hold_preferred attribute for the inverter IV,
enter

dc_shell-xg-t> set_prefer -min class/IV
1

Use the remove_attribute command to remove the
hold_preferred cell attribute.
4-15

Directing Library Cell Usage

dc_shell-xg-t> remove_attribute class/IV hold_preferred
class/IV

Removing Libraries From Memory

The remove_design command removes libraries from dc_shell
memory. If you have multiple libraries with the same name loaded
into memory, you must specify the path as well as the library name.
Use the list_libs command to see the path for each library in
memory.

Saving Libraries

The write_lib command saves (writes to disk) a compiled library
in Synopsys database, EDIF, or VHDL format.
4-16

Chapter 4: Working With Libraries

5
Working With Designs in Memory 5

Design Compiler reads designs into memory from design files. Many
designs can be in memory at any time. After a design is read in, you
can change it in numerous ways, such as grouping or ungrouping its
subdesigns or changing subdesign references.

This chapter contains the following sections:

• Design Terminology

• Design Database Formats

• Reading Designs

• Listing Designs in Memory

• Setting the Current Design

• Linking Designs

• Listing Design Objects
5-1

• Specifying Design Objects

• Creating Designs

• Copying Designs

• Renaming Designs

• Changing the Design Hierarchy

• Editing Designs

• Translating Designs From One Technology to Another

• Removing Designs From Memory

• Saving Designs

• Working With Attributes
5-2

Chapter 5: Working With Designs in Memory

Design Terminology

Different companies use different terminology for designs and their
components. This section describes the terminology used in the
Synopsys synthesis tools.

About Designs

Designs are circuit descriptions that perform logical functions.
Designs are described in various design formats, such as VHDL,
Verilog HDL, state machine, and EDIF.

Logic-level designs are represented as sets of Boolean equations.
Gate-level designs, such as netlists, are represented as
interconnected cells.

Designs can exist and be compiled independently of one another, or
they can be used as subdesigns in larger designs. Designs are flat
or hierarchical.

Flat Designs

Flat designs contain no subdesigns and have only one structural
level. They contain only library cells.

Hierarchical Designs

A hierarchical design contains one or more designs as subdesigns.
Each subdesign can further contain subdesigns, creating multiple
levels of design hierarchy. Designs that contain subdesigns are
called parent designs.
5-3

Design Terminology

Design Objects

Figure 5-1 shows the design objects in a design called TOP.
Synopsys commands, attributes, and constraints are directed toward
specific design objects.

Figure 5-1 Design Objects

Design

A design consists of instances, nets, ports, and pins. It can contain
subdesigns and library cells. In Figure 5-1, the designs are TOP,
ENCODER, and REGFILE. The active design (the design being
worked on) is called the current design. Most commands are specific
to the current design, that is, they operate within the context of the
current design.

INV1

INV0
U2

U3

U1

Q0

Q1

A

B

C

D

D0

D1

U4

OUT[1:0]

ENCODER REGFILE

CLK

Q[1:0]

AIN

BIN

BUS0

BUS1

INV

INV

TOP

Design Port Instance or Net

D0

D1

Pin

Design: {TOP, ENCODER, REGFILE}

Reference: {ENCODER, REGFILE, INV}

Instance: {U1, U2, U3, U4}

CIN

DIN

A

B

C

D

Cell
5-4

Chapter 5: Working With Designs in Memory

Reference

A reference is a library component or design that can be used as an
element in building a larger circuit. The structure of the reference can
be a simple logic gate or a more complex design (a RAM core or
CPU). A design can contain multiple occurrences of a reference;
each occurrence is an instance.

References enable you to optimize every cell (such as a NAND gate)
in a single design without affecting cells in other designs. The
references in one design are independent of the same references in
a different design. In Figure 5-1, the references are INV, ENCODER,
and REGFILE.

Instance or Cell

An instance is an occurrence in a circuit of a reference (a library
component or design) loaded in memory; each instance has a
unique name. A design can contain multiple instances; each
instance points to the same reference but has a unique name to
distinguish it from other instances. An instance is also known as a
cell.

A unique instance of a design within another design is called a
hierarchical instance. A unique instance of a library cell within a
design is called a leaf cell. Some commands work within the context
of a hierarchical instance of the current design. The current instance
defines the active instance for these instance-specific commands. In
Figure 5-1, the instances are U1, U2, U3, and U4.

Ports

Ports are the inputs and outputs of a design. The port direction is
designated as input, output, or inout.
5-5

Design Terminology

Pins

Pins are the input and output of cells (such as gates and flip-flops)
within a design. The ports of a subdesign are pins within the parent
design.

Nets

Nets are the wires that connect ports to pins and pins to each other.

Relationship Between Designs, Instances, and
References

Figure 5-2 shows the relationships among designs, instances, and
references.

Figure 5-2 Instances and References

The EXREF design contains two references: NAND2 and
MULTIPLIER. NAND2 is instantiated three times, and MULTIPLIER
is instantiated once.

The names given to the three instances of NAND2 are U1, U2, and
U3. The references of NAND2 and MULTIPLIER in the EXREF
design are independent of the same references in different designs.

EXREF

NAND2

MULTIPLIER

U1

NAND2

U3

NAND2

U2

U4

 Designs loaded in memory

NAND2

MULTIPLIER

(references)
5-6

Chapter 5: Working With Designs in Memory

For information about resolving references, see “Linking Designs” on
page 5-19.

Using Reference Objects

When you use the get_references command, Design Compiler
returns a collection of instances that have the specified reference,
and you operate on the instances.

For example, the following command returns a collection of
instances in the current design that have the reference AN2:

dc_shell-xg-t> get_references AN2
{U2 U3 U4}

To see the reference names, use the following command:

dc_shell-xg-t> report_cell [get_references AN*]

Cell Reference Library Area Attributes
--
U2 AN2 lsi_10k 2.000000
U3 AN2 lsi_10k 2.000000
U4 AN2 lsi_10k 2.000000
U8 AN3 lsi_10k 2.000000

Note:
In DB mode, the get_references command returns a
collection of references. For example, the following command
returns a collection containing the reference AN2:

dc_shell-t> get_references AN2
{"AN2"}
5-7

Design Terminology

Design Database Formats

Design Compiler stores design data in the Synopsys internal
database format. In XG mode, Design Compiler supports two design
database formats: .ddc and Milkyway. In DB mode, Design Compiler
supports the .db format.

Note:
XG mode also supports the .db format; however, to maximize the
capacity and performance improvements offered in XG mode,
use the .ddc format rather than the .db format.

The database formats are described below:

• .db format

This format is the older internal database format. It is a binary
format that can represent RTL code, mapped gate-level designs,
or libraries. It can also contain any constraints that have been
applied to the design.

• .ddc format

The .ddc format is similar to the .db format in that it is a single-file,
binary format. The .ddc format stores design data in a more
efficient manner than the .db format, enabling increased capacity.
In addition, reading and writing files in .ddc format is faster than
reading and writing files in .db format. The .ddc format stores only
logical design information.

• Milkyway format
5-8

Chapter 5: Working With Designs in Memory

The Milkyway format allows you to read and write a Milkyway
database within Design Compiler to use with other Synopsys
Galaxy tools, such as Physical Compiler, JupiterXT, and Astro.
The Milkyway format stores both logical and physical design
information, but it requires a mapped design.

Reading Designs

Design Compiler can read designs in the formats listed in Table 5-1.

Table 5-1 Supported Input Formats

Format Description

.ddc Synopsys internal database format (XG mode only)

Milkyway Format for reading a Milkyway database from Design Compiler (XG
mode only)

.db Synopsys internal database format

EDIF Electronic Design Interchange Format (see the EDIF 2 0 0 Interface
User Guide)

.eqn Synopsys equation format

LSI LSI Logic Corporation netlist format

MIF Mentor Intermediate netlist format

PLA Berkeley (Espresso) programmable logic array format

.st Synopsys state table format

TDL Tegas Design Language netlist format

Verilog IEEE standard Verilog (see the HDL Compiler documentation)

VHDL IEEE standard VHDL (see the HDL Compiler documentation)
5-9

Reading Designs

Commands for Reading Design Files

Design Compiler provides the following ways to read design files:

• The analyze and elaborate commands

• The read_file command

• The read_milkyway command

Using the analyze and elaborate Commands

The analyze command does the following:

• Reads an HDL source file

• Checks it for errors (without building generic logic for the design)

• Creates HDL library objects in an HDL-independent intermediate
format

• Stores the intermediate files in a location you define

If the analyze command reports errors, fix them in the HDL source
file and run analyze again. After a design is analyzed, you must
reanalyze it only when you change it.

Use options to the analyze command as follows:

To do this Use this

Store design elements in a library other than the
work library

-library
By default, the analyze
command stores all output in
the work library.

Specify the format of the files to be analyzed -vhdl or -verilog

Specify a list of files to be analyzed -file_list
5-10

Chapter 5: Working With Designs in Memory

The elaborate command does the following:

• Translates the design into a technology-independent design
(GTECH) from the intermediate files produced during analysis

• Allows changing of parameter values defined in the source code

• Allows VHDL architecture selection

• Replaces the HDL arithmetic operators in the code with
DesignWare components

• Automatically executes the link command, which resolves
design references

Use options to the elaborate command as follows:

For more information about the analyze and elaborate
commands, see the man pages and HDL Compiler (Presto Verilog)
Reference Manual or the HDL Compiler (Presto VHDL) Reference
Manual.

To do this Use this

Specify the name of the design to be built (the
design can be a Verilog module, a VHDL entity, or
a VHDL configuration)

-design_name

Find the design in a library other than the work
library (the default)

-library

Specify the name of the architecture -architecture

Automatically reanalyze out-of-date intermediate
files if the source can be found

-update

Specify a list of design parameters -parameters
5-11

Reading Designs

Using the read_file Command

The read_file command does the following:

• Reads several different formats

• Performs the same operations as analyze and elaborate in a
single step

• Creates .mr and .st intermediate files for VHDL

• Does not execute the link command automatically (see
“Linking Designs” on page 5-19)

• Does not create any intermediate files for Verilog (However, you
can have the read_file command create intermediate files by
setting the hdlin_auto_save_templates variable to true)

For designs in memory, Design Compiler uses the naming
convention path_name /design.ddc. The path_name argument is the
directory from which the original file was read, and the design
argument is the name of the design. If you later read in a design that
has the same file name, Design Compiler overwrites the original
design. To prevent this, use the -single_file option with the
read_file command.

Use options to the read_file command as follows:

To do this Use this

Specify a list of files to be read -file_list

Specify the format in which a design is read -format

You can specify any input
format listed in Table 5-1
(except the Milkyway format;
use the read_milkyway
command instead)
5-12

Chapter 5: Working With Designs in Memory

Table 5-2 summarizes the differences between using the
read_file command and using the analyze and elaborate

commands to read design files.

Store design elements in a library other than
the work library (the default) when reading
VHDL design descriptions

-library

Specify that the design being read is a
structural or gate-level design when reading
Verilog or VHDL designs

-netlist -format\

verilog|vhdl1

Specify that the design being read is an RTL
design when reading Verilog or VHDL designs

-rtl -format\

verilog|vhdl2

1. The -netlist option is optional when you read a Verilog design.
2. The -rtl option is optional when you read a Verilog design.

Table 5-2 read_file Versus analyze and elaborate Commands

Comparison read_file command analyze and elaborate commands

Input formats All formats VHDL, Verilog.

When to use Netlists, precompiled designs,
and so forth

Synthesize VHDL or Verilog.

Generics Cannot pass parameters (must
use directives in HDL)

Allows you to set parameter values
on the elaborate command line.
Thus for parameterized designs, you
can use the analyze and elaborate
commands to build a new design with
nondefault values.

Architecture Cannot specify the architecture
to be elaborated

Allows you to specify architecture to
be elaborated.

Linking
designs

Must use the link command to
resolve references

The elaborate command executes
the link command automatically to
resolve references.

To do this Use this
5-13

Reading Designs

Using the read_milkyway command

In XG mode, you can use the read_milkyway command to read
design data from the Milkyway design library. For more information,
see the Design Compiler Reference Manual: Optimization and
Timing Analysis.

Reading HDL Designs

Use one of the following methods to read HDL design files:

• The analyze and elaborate commands

Follow these steps:

1. Analyze the top-level design and all subdesigns in bottom-up
order (to satisfy any dependencies).

2. Elaborate the top-level design and any subdesigns that require
parameters to be assigned or overwritten.

For example, enter

dc_shell-xg-t> analyze -format vhdl -lib -work \
RISCTYPES.vhd
dc_shell-xg-t> analyze -format vhdl -lib -work {ALU.vhd \
STACK_TOP.vhd STACK_MEM.vhd...}
dc_shell-xg-t> elaborate RISC_CORE -arch STRUCT -lib \
WORK -update

• The read_file command

For example, enter

dc_shell-xg-t> read_file -format verilog RISC_CORE.v

• The read_verilog or read_vhdl command

For example, enter
5-14

Chapter 5: Working With Designs in Memory

dc_shell-xg-t> read_verilog RISC_CORE.v

You can also use the read_file -format VHDL and
read_file -format verilog commands.

Reading .ddc Files

To read the design data from a .ddc file, use the read_ddc
command or the read_file -format ddc command. For
example,

dc_shell-xg-t> read_ddc design_file.ddc

Note:
Like the .db format, the .ddc format is backward compatible (you
can read a .ddc file that was generated with an earlier software
version) but not forward compatible (you cannot read a .ddc file
that was generated with a later software version).

Reading .db Files

Although you can use the .db format in XG mode, it is not
recommended. To maximize the capacity and performance
improvements offered in XG mode, use the .ddc format rather than
the .db format.

To read in a .db file, use the read_db command or the read_file
-format db command. For example,

dc_shell-xg-t> read_db design_file.db

The version of a .db file is the version of Design Compiler that
created the file. For a .db file to be read into Design Compiler, its file
version must be the same as or earlier than the version of Design
5-15

Reading Designs

Compiler you are running. If you attempt to read in a .db file
generated by a Design Compiler version that is later than the Design
Compiler version you are using, an error message appears. The
error message provides details about the version mismatch.

Listing Designs in Memory

To list the names of the designs loaded in memory, use the
list_designs command.

dc_shell-xg-t> list_designs
A (*) B C
1

The asterisk (*) next to design A shows that A is the current design.

To list the memory file name corresponding to each design name,
use the -show_file option.

dc_shell-xg-t> list_designs -show_file

/user1/designs/design_A/A.ddc
A (*)

/home/designer/dc/B.ddc
B C
1

The asterisk (*) next to design A shows that A is the current design.
File B.ddc contains both designs B and C.

To check for duplicate designs loaded in memory, use the
list_duplicate_designs command (dcsh only).

dc_shell> list_duplicate_designs
Warning: Multiple designs in memory with the same design
name.
5-16

Chapter 5: Working With Designs in Memory

 Design File Path
 ------ ---- ----
 seq2 A.db /home/designer/dc
 seq2 B.db /home/designer/dc
1

Setting the Current Design

You can set the current design (the design you are working on) in the
following ways:

• With the read_file command

When the read_file command successfully finishes
processing, it sets the current design to the design that was read
in.

dc_shell-xg-t> read_file -format ddc MY_DESIGN.ddc
Reading ddc file ’/designs/ex/MY_DESIGN.ddc’
Current design is ’MY_DESIGN’

• With the elaborate command

• With the current_design command

Use this command to set any design in dc_shell memory as the
current design.

dc_shell-xg-t> current_design ANY_DESIGN
Current design is ’ANY_DESIGN’.
{ANY_DESIGN}

To display the name of the current design, enter one of the following
commands (depending on your command language):

dc_shell-xg-t> printvar current_design
current_design = "test"
5-17

Setting the Current Design

dc_shell> list current_design
current_design = "/usr/home/designs/
my_design.db:my_design"
1

Using the current_design Command

In XG mode, it is recommended that you avoid writing scripts that
use a large number of current_design commands, such as in a
loop. Using a large number of current_design commands can
increase runtime. For more information, see the Design Compiler
Command-Line Interface Guide, Chapter 5.

Additionally, in XG mode, several commands are enhanced to accept
instance objects—that is, cells at a lower level of hierarchy. You can
operate on hierarchical designs from any level in the design without
using the current_design command. The enhanced commands
are listed below:

• Netlist editing commands.

For more information, see “Editing Designs” on page 5-47.

• The ungroup, group, and uniquify commands

For more information, see “Removing Levels of Hierarchy” on
page 5-35 and “Uniquify Method” on page 8-22.

• The set_size_only command

For more information, see the Design Compiler Reference
Manual: Optimization and Timing Analysis.

• The change_link command
5-18

Chapter 5: Working With Designs in Memory

For more information, see “Changing Design References” on
page 5-22.

Linking Designs

For a design to be complete, it must connect to all the library
components and designs it references. This process is called linking
the design or resolving references.

Design Compiler uses the link command to resolve references.
The link command uses the link_library and search_path
system variables and the local_link_library attribute to
resolve design references.

Design Compiler resolves references by carrying out the following
steps:

1. It determines which library components and subdesigns are
referenced in the current design and its hierarchy.

2. It searches the link libraries to locate these references.

a. Design Compiler first searches the libraries and design files
defined in the current design’s local_link_library
attribute

b. If an asterisk is specified in the value of the link_library
variable, Design Compiler searches in memory for the
reference.

c. Design Compiler then searches the libraries and design files
defined in the link_library variable.

3. If it does not find the reference in the link libraries, it searches in
the directories specified by the search_path variable. See
“Locating Designs by Using a Search Path” on page 5-21.
5-19

Linking Designs

4. It links (connects) the located references to the design.

Note:
In a hierarchical design, Design Compiler considers only the
top-level design’s local link library. It ignores local link libraries
associated with the subdesigns.

Design Compiler uses the first reference it locates. If it locates
additional references with the same name, it generates a warning
message identifying the ignored, duplicate references. If Design
Compiler does not find the reference, a warning appears advising
that the reference cannot be resolved.

By default, the case sensitivity of the linking process depends on the
source of the references. To explicitly define the case sensitivity of
the linking process, set the link_force_case variable.

The arrows in Figure 5-3 show the connections that the linking
process added between the instances, references, and link libraries.
In this example, Design Compiler finds library component NAND2 in
the LIBRARY_2 technology library; it finds subdesign MULTIPLIER
in a design file.
5-20

Chapter 5: Working With Designs in Memory

Figure 5-3 Resolving References

Locating Designs by Using a Search Path

You can specify the design file location by using the complete path
or only the file name. If you specify only the file name, Design
Compiler uses the search path defined in the search_path
variable. Design Compiler looks for the design files starting with the
leftmost directory specified in the search_path variable and uses
the first design file it finds. By default, the search path includes the
current working directory and $SYNOPSYS/libraries/syn. To see
where Design Compiler finds a file when using the search path, use
the which command. For example, enter

dc_shell-xg-t> which my_design.ddc
{/usr/designers/example/my_design.ddc}

To specify other directories in addition to the default search path, use
one of the following commands (depending on your command
language):

dc_shell-xg-t> lappend search_path project

OR

References

NAND2

MULTIPLIER

NAND2

U1

NAND2

U3

NAND2

U2

U4

EXREF Link libraries

LIBRARY_1

LIBRARY_2

Technology libraries

MULTIPLIER

ADDER

Design files

AND2
NAND2
OR2

MULTIPLIER
5-21

Linking Designs

dc_shell> search_path = search_path + “./project”

Changing Design References

Use the change_link command to change the component or
design to which a cell or reference is linked.

• For a cell, the link for that cell is changed.

• For a reference, the link is changed for all cells having that
reference.

The link can be changed only to a component or design that has the
same number of ports with the same size and direction as the
original reference.

When you use change_link, all link information is copied from the
old design to the new design. If the old design is a synthetic module,
all attributes of the old synthetic module are moved to the new link.

The change_link command accepts instance object, that is, cells
at a lower level in the hierarchy. Additionally, you can use the
-all_instances option to make link changes for a leaf cell when
its parent design is instantiated multiple times. The link change is
applied on leaf cells for all instances of the parent design. Therefore,
you can make link changes for such cells without using the
current_design command.

Example 1

The following command shows how cells U1 and U2 are linked from
the current design to MY_ADDER:

dc_shell-xg-t> copy_design ADDER MY_ADDER
dc_shell-xg-t> change_link {U1 U2} MY_ADDER
5-22

Chapter 5: Working With Designs in Memory

Example 2

The following command changes the link for cell U1, which is at a
lower level in the hierarchy:

dc_shell-xg-t> change_link top/sub_inst/U1 lsi_10k/AN3

Note:
In DB mode, you would enter the following set of commands to
achieve the same result:

dc_shell> current_design sub
dc_shell> change_link [get_cells U1] lsi_10k/AN3
dc_shell> current_design top

Example 3

This example shows how you can use the -all_instances option
to change the link for leaf cell inv1, when its parent design, bot, is
instantiated multiple times. The design bot is instantiated twice:
mid1/bot1 and mid1/bot2.

dc_shell-xg-t> change_link -all_instances \mid1/bot1/inv1
lsi_10k/AN3
Information: Changed link for all instances of cell ‘inv1’
in subdesign ‘bot’. (UID-193)

dc_shell-xg-t> get_cells -hierarchical \-filter “ref_name
== AN3”
{mid1/bot1/inv1 mid1/bot2/inv1}
1

5-23

Linking Designs

Listing Design Objects

Design Compiler provides commands for accessing various design
objects. These commands refer to design objects located in the
current design. Each command in Table 5-3 performs one of the
following actions:

• List

Provides a listing with minimal information.

• Display

Provides a report that includes characteristics of the design
object.

• Return

Returns a list (dcsh) or collection (dctcl) that can be used as input
to another dc_shell command.

Table 5-3 lists the commands and the actions they perform.

Table 5-3 Commands to Access Design Objects

Object Command Action

Instance list_instances
report_cell

Lists instances and their references.
Displays information about instances.

Reference report_reference Displays information about references.

Port report_port
report_bus
all_inputs
all_outputs

Displays information about ports.
Displays information about bused ports.
Returns all input ports.
Returns all output ports.
5-24

Chapter 5: Working With Designs in Memory

Note:
In dctcl, you can also use the get_* commands to create and list
collections of cells, designs, libraries, library cells, library cell
pins, nets, pins, and ports.

Specifying Design Objects

You can specify design objects by using either a relative path or an
absolute path.

Using a Relative Path

If you use a relative path to specify a design object, the object must
be in the current design. Specify the path relative to the current
instance. The current instance is the frame of reference within the
current design. By default, the current instance is the top level of the
current design. Use the current_instance command to change
the current instance.

For example, to place a dont_touch attribute on hierarchical cell
U1/U15 in the Count_16 design, you can enter either

dc_shell-xg-t> current_design Count_16

Net report_net
report_bus

Displays information about nets.
Displays information about bused nets.

Clock report_clock
all_clocks

Displays information about clocks.
Returns all clocks.

Register all_registers Returns all registers.

Table 5-3 Commands to Access Design Objects (Continued)

Object Command Action
5-25

Specifying Design Objects

Current design is ’Count_16’.
{Count_16}
dc_shell-xg-t> set_dont_touch U1/U15

or

dc_shell-xg-t> current_design Count_16
Current design is ’Count_16’.
{Count_16}
dc_shell-xg-t> current_instance U1
Current instance is ’/Count_16/U1’.
/Count_16/U1
dc_shell-xg-t> set_dont_touch U15
1

In the first command sequence, the frame of reference remains at
the top level of design Count_16. In the second command sequence,
the frame of reference changes to instance U1. Design Compiler
interprets all future object specifications relative to instance U1.

To reset the current instance to the top level of the current design,
enter the current_instance command without an argument.

dc_shell-xg-t> current_instance
Current instance is the top-level of the design ‘Count_16’

The current_instance variable points to the current instance. To
display the current instance, enter one of the following commands
(depending on your command language):

dc_shell-xg-t> printvar current_instance
current_instance = "Count_16/U1"

dc_shell> list current_instance
current_instance = "Count_16/U1"
1

5-26

Chapter 5: Working With Designs in Memory

In DB mode (dcsh command language), the current_reference
variable points to the reference of the current instance. This variable
is not supported in dctcl. To display the reference of the current
instance, enter the following command (dcsh only):

dc_shell> list current_reference
current_reference = "/usr/designs/Count_16.db:Count_4"
1

Using an Absolute Path

When you use an absolute path to specify a design object, the object
can be in any design in dc_shell memory. Use the following syntax to
specify an object by using an absolute path:

[file:]design/object

file

The path name of a memory file followed by a colon (:). Use the
file argument when multiple designs in memory have the same
name.

design

The name of a design in dc_shell memory.

object

The name of the design object, including its hierarchical path. If
several objects of different types have the same name and you
do not specify the object type, Design Compiler looks for the
object by using the types allowed by the command.
5-27

Specifying Design Objects

To specify an object type, use either the find command in dcsh
or the get_* command in dctcl. For more information about
these commands, see the Design Compiler Command-Line
Interface Guide.

For example, to place a dont_touch attribute on hierarchical cell
U1/U15 in the Count_16 design, enter

dc_shell-xg-t> set_dont_touch \
/usr/designs/Count_16.ddc:Count_16/U1/U5

1

Creating Designs

The create_design command creates a new design. The memory
file name is my_design.db, and the path is the current working
directory.

dc_shell-xg-t> create_design my_design
1
dc_shell-xg-t> list_designs -show_file

/work_dir/mapped/test.ddc
test (*) test_DW01_inc_16_0 test_DW02_mult_16_16_1

/work_dir/my_design.db
my_design
1

Designs created with create_design contain no design objects.
Use the appropriate create commands (such as create_clock,
create_cell, or create_port) to add design objects to the new
design. For information about these commands, see “Editing
Designs” on page 5-47.
5-28

Chapter 5: Working With Designs in Memory

It is recommended that in XG mode, you store design data in the .ddc
format rather than the .db format. After you have added design
objects to your design, save your design in the .ddc format by using
the write -format ddc command. See “Saving Designs in .ddc
Format” on page 5-55.

Copying Designs

The copy_design command copies a design in memory and
renames the copy. The new design has the same path and memory
file as the original design.

dc_shell-xg-t> copy_design test test_new
Information: Copying design /designs/test.ddc: to \/
designs/test.ddc:test_new
1
dc_shell-xg-t> list_designs -show_file

/designs/test.ddc
test (*) test_new

You can use the copy_design command with the change_link
command to manually create unique instances. For example,
assume that a design has two identical cells, U1 and U2, both linked
to COMP.

Enter the following commands to create unique instances:
5-29

Copying Designs

dc_shell-xg-t> copy_design COMP COMP1
Information: Copying design /designs/COMP.ddc:COMP to \/
designs/COMP.ddc:COMP1
1
dc_shell-xg-t> change_link U1 COMP1
Performing change_link on cell ’U1’.
1
dc_shell-xg-t> copy_design COMP COMP2
Information: Copying design /designs/COMP.ddc:COMP to \/
designs/COMP.ddc:COMP2
1
dc_shell-xg-t> change_link U2 COMP2
Performing change_link on cell ’U2’.
1

Renaming Designs

Use the rename_design command to rename a design in memory.

In the following example, the list_designs command is used to
show the design before and after rename_design is used:

dc_shell-xg-t> list_designs -show_file

/designs/test.ddc
test(*) test_new
1

dc_shell-xg-t> rename_design test_new test_new_1
Information: Renaming design /designs/test.ddc:test_new to \

/designs/test.ddc:test_new_1
1

dc_shell-xg-t> list_designs -show_file

/designs/test.ddc
test (*) test_new test_new_1
1

5-30

Chapter 5: Working With Designs in Memory

Note:
Renaming designs might cause unresolved references during
linking.

Changing the Design Hierarchy

When possible, reflect the design partitioning in your HDL
description. If your HDL code is already developed, Design Compiler
enables you to change the hierarchy without modifying the HDL
description.

The report_hierarchy command displays the design hierarchy.
Use this command to understand the current hierarchy before
making changes and to verify the hierarchy changes.

Design Compiler provides the following hierarchy manipulation
capabilities:

• Adding levels of hierarchy

• Removing levels of hierarchy

• Merging cells from different subdesigns

The following sections describe these capabilities.

Adding Levels of Hierarchy

Adding a level of hierarchy is called grouping. You can create a level
of hierarchy by grouping cells or related components into
subdesigns.
5-31

Changing the Design Hierarchy

Grouping Cells Into Subdesigns

You use the group command to group cells (instances) in the design
into a new subdesign, creating a new level of hierarchy. The grouped
cells are replaced by a new instance (cell) that references the new
subdesign.

The ports of the new subdesign are named after the nets to which
they are connected in the design. The direction of each port of the
new subdesign is determined from the pins of the corresponding net.

To create a new subdesign by using the group command, use its
arguments and options as follows:

To do this Use this

Specify a list of cells to be grouped into the
new subdesign.

When the parent design is unique, the list can
include cells from a lower level in the
hierarchy; however, these cells should be at
the same level of hierarchy in relation to one
another.

To exclude cells from the specified list use the
-except option.

Note:
In DB mode, all cells to be grouped must
be children of the current instance.

Provide a list of cells as an
argument to the group
command

Specify the name of the new subdesign -design_name

Specify the new instance name (optional)

If you do not specify an instance name, Design
Compiler creates one for you. The created
instance name has the format Un, where n is
an unused cell number (for example, U107).

-cell_name
5-32

Chapter 5: Working With Designs in Memory

Note:
Grouping cells might not preserve all the attributes and
constraints of the original cells.

The following examples illustrate how to use the group command.

Example 1

To group two cells into a new design named SAMPLE with an
instance name U, enter

dc_shell-xg-t> group {u1 u2} -design_name SAMPLE -cell_name U

Example 2

To group all cells that begin with alu into a new design uP with cell
name UCELL, enter

dc_shell-xg-t> group "alu*" -design_name uP -cell_name UCELL

Example 3

In the following example, three cells— bot1, foo1, and j —are
grouped into a new subdesign named SAMPLE, with an instance
name U1. The cells are at a lower level in the hierarchy and at the
same hierarchical level; the parent design is unique.

dc_shell-xg-t> group {mid1/bot1 mid1/foo1 mid1/j}\
-cell_name U1 -design_name SAMPLE

The preceding command is equivalent to issuing the following two
commands:

dc_shell-xg-t> current_design mid
dc_shell-xg-t> group {bot1 foo1 j} -cell_name U1 \
-design_name SAMPLE
5-33

Changing the Design Hierarchy

Note:
In DB mode, the group command cannot accept instance
objects. To group cells that are at a lower level of hierarchy, enter

dc_shell> current_design mid
dc_shell> group {bot1 foo1 j} -cell_name U1 \
-design_name SAMPLE

Grouping Related Components Into Subdesigns

You also use the group command (but with different options) to
group related components into subdesigns. To group related
components, use options to the group command as follows:

To do this Use this

Specify one of the
following component types:

Bused gates -hdl_bussed

Combinational logic -logic

Finite state machines -fsm

HDL blocks -hdl_all_blocks
-hdl_block block_name

PLA specifications -pla

Specify the name of the new
subdesign

-design_name
5-34

Chapter 5: Working With Designs in Memory

Note:
You cannot use the -design_name and -cell_name options
with the hdl_all_blocks or hdl_bussed option.

Example 1

To group all cells in the HDL function bar in the process ftj into design
new_block, enter

dc_shell-xg-t> group -hdl_block ftj/bar -design_name \
new_block

Example 2

To group all bused gates beneath process ftj into separate levels of
hierarchy, enter

dc_shell-xg-t> group -hdl_block ftj -hdl_bussed

Removing Levels of Hierarchy

Design Compiler does not optimize across hierarchical boundaries;
therefore, you might want to remove the hierarchy within certain
designs. By doing so, you might be able to improve timing results.

Optionally, specify the new instance
name

If you do not specify an instance
name, Design Compiler creates one
for you. The created instance name
has the format Un, where n is an
unused cell number (for example,
U107).

-cell_name

To do this Use this
5-35

Changing the Design Hierarchy

Removing a level of hierarchy is called ungrouping. Ungrouping
merges subdesigns of a given level of the hierarchy into the parent
cell or design. Ungrouping can be done before optimization or during
optimization (either explicitly or automatically).

Note:
Designs, subdesigns, and cells that have the dont_touch
attribute cannot be ungrouped (including auto-ungrouping)
before or during optimization.

Ungrouping Hierarchies Before Optimization

You use the ungroup command to ungroup one or more designs
before optimization.

Use as follows arguments and options to the ungroup command:

To do this Use this

Specify a list of cells to be ungrouped

When the parent design is unique, the list can
include cells from a lower level in the hierarchy
(that is, the ungroup command can accept
instance objects)

Note:
In DB mode, the ungroup command
cannot accept instance objects.

Provide a list of cells as an
argument to the ungroup
command

Ungroup all cells in the current design or
current instance

-all

Ungroup each cell recursively until all levels of
hierarchy within the current design (instance)
are removed

-flatten
5-36

Chapter 5: Working With Designs in Memory

Note:
If you ungroup cells and then use the change_names command
to modify the hierarchy separator (/), you might lose attribute and
constraint information.

The following examples illustrate how to use the ungroup
command.

Example 1

To ungroup a list of cells, enter

dc_shell-xg-t> ungroup {high_decoder_cell \
low_decoder_cell}

Ungroup cells recursively starting at any
hierarchical level below the current design

You must specify a number for this option: 1,
2, 3, and so on. A value of 1 indicates that cells
from the current design are to be ungrouped.
The cells that are at the level specified by the
-start_level option are included in the
ungrouping. Additionally, when you use this
option, the ungroup command cannot accept
instance objects.

-start_level number

Specify the prefix to use in naming ungrouped
cells

If you do not specify a prefix, Design Compiler
uses the prefix cell_to_be_ungrouped/
old_cell_name {number}.

-prefix prefix_name

Ungroup subdesigns with fewer leaf cells than
a specified number

-small number

To do this Use this
5-37

Changing the Design Hierarchy

Example 2

To ungroup the cell U1 and specify the prefix to use when creating
new cells, enter

dc_shell-xg-t> ungroup U1 -prefix "U1:”

Example 3

To completely collapse the hierarchy of the current design, enter

dc_shell-xg-t> ungroup -all -flatten

Example 4

To recursively ungroup cells belonging to CELL_X, which is three
hierarchical levels below the current design, enter

dc_shell-xg-t> ungroup -start_level 3 CELL_X

Example 5

To recursively ungroup cells that are three hierarchical levels below
the current design and belong to cells U1 and U2 (U1 and U2 are
child cells of the current design), enter

dc_shell-xg-t> ungroup -start_level 2 {U1 U2}

Example 6

To recursively ungroup all cells that are three hierarchical levels
below the current design, enter

dc_shell-xg-t> ungroup -start_level 3 -all
5-38

Chapter 5: Working With Designs in Memory

Example 7

This example illustrates how the ungroup command can accept
instance objects (cells at a lower level of hierarchy) when the parent
design is unique. In the example, MID1/BOT1 is a unique
instantiation of design BOT. The command ungroups the cells MID1/
BOT1/FOO1 and MID1/BOT1/FOO2.

dc_shell-xg-t> ungroup {MID1/BOT1/FOO1 MID1/BOT1/FOO2}

The preceding command is equivalent to issuing the following two
commands:

dc_shell-xg-t> current_instance MID1/BOT1
dc_shell-xg-t> ungroup {FOO1 FOO2}

Note:
In DB mode, the ungroup command cannot accept instance
objects. For example, to ungroup the cells MID1/BOT1/FOO1
and MID1/BOT1/FOO2, you would have to enter

dc_shell> current_instance MID1/BOT1
dc_shell> ungroup {FOO1 FOO2}

Ungrouping Hierarchies During Optimization

You can ungroup designs during optimization either explicitly or
automatically.

Ungrouping Hierarchies Explicitly During Optimization. You
can control which designs are ungrouped during optimization by
using the set_ungroup command followed by the compile
command or the -ungroup_all compile option.
5-39

Changing the Design Hierarchy

• Use the set_ungroup command when you want to specify the
cells or designs to be ungrouped. This command assigns the
ungroup attribute to the specified cells or referenced designs. If
you set the attribute on a design, all cells that reference the
design are ungrouped.

For example, to ungroup cell U1 during optimization, enter the
following commands:

dc_shell-xg-t> set_ungroup U1
dc_shell-xg-t> compile

To see whether an object has the ungroup attribute set, use the
get_attribute command.

dc_shell-xg-t> get_attribute object ungroup

To remove an ungroup attribute, use the remove_attribute
command or set the ungroup attribute to false.

dc_shell-xg-t> set_ungroup object false

• Use the -ungroup_all compile option to remove all lower
levels of the current design hierarchy (including DesignWare
parts). For example, enter

dc_shell-xg-t> compile -ungroup_all

Ungrouping Hierarchies Automatically During Optimization.

Design Compiler provides two options to automatically ungroup
hierarchies: cell-count-based auto-ungrouping and delay-based
auto-ungrouping.

To use the auto-ungrouping capability, enter

compile -auto_ungroup area|delay
5-40

Chapter 5: Working With Designs in Memory

You can use only one argument at a time: either the area argument
for cell count-based auto-ungrouping or the delay argument for
delay-based auto-ungrouping.

Note:
The compile_ultra command also does automatic
ungrouping; for more information, see “Automatic Ungrouping
Using the compile_ultra command” on page 8-45. You can use
the auto-ungrouping capability for all compile options except
-top and -incremental_mapping.

Before ungrouping begins, the tool issues a message to indicate that
the specified hierarchy is being ungrouped.

After auto-ungrouping, use the report_auto_ungroup command
to get a report on the hierarchies that were ungrouped during cell-
count-based auto-ungrouping or delay-based auto-ungrouping. This
report gives instance names, cell names, and the number of
instances for each ungrouped hierarchy.

Cell-Count-Based Auto-Ungrouping

Cell count-based auto-ungrouping ungroups small hierarchies and is
used essentially for area optimization. You use this compile option if
you want to control explicitly when the compile command ungroups
the small hierarchies in the current design and its subdesigns.

Use the compile_auto_ungroup_area_num_cells variable to
specify the minimum number of child cells that a design hierarchy
must have so that it is not ungrouped. The default is 30. This
threshold value of a hierarchy refers to the number of child cells in
that hierarchy (that is, the cells are not counted recursively). To
include all leaf cells of the design hierarchy, set the
compile_auto_ungroup_count_leaf_cells variable to true.
5-41

Changing the Design Hierarchy

Delay-Based Auto-Ungrouping

Delay-based auto-ungrouping ungroups hierarchies along the
critical path and is used essentially for timing optimization.

Use the compile_auto_ungroup_delay_num_cells variable
to specify the minimum number of child cells that a design hierarchy
must have so that it is not ungrouped. The default is 500. This
threshold value of a hierarchy refers to the number of child cells in
that hierarchy (that is, the cells are not counted recursively). To
include all leaf cells of the design hierarchy, set the
compile_auto_ungroup_count_leaf_cells variable to true.

Note that DesignWare components are not ungrouped because they
are already highly optimized and significant improvements in area or
timing are unlikely. In addition, if the design being ungrouped has no
timing violations, the tool issues a message to indicate that
delay-based auto-ungrouping will not be performed.

Delay-based auto-ungrouping attempts to improve the overall timing
of the design by ungrouping those hierarchies that are most likely to
benefit from the extra boundary optimizations that ungrouping
provides. Such hierarchies contain paths that are either critical or
likely to become critical after subsequent optimization steps.
Delay-based auto-ungrouping thus offers a less CPU-intensive
alternative to -ungroup_all for improving design timing.

Cases in Which Auto-Ungrouping Is Not Performed

For both types of auto-ungrouping, a hierarchy is not ungrouped in
the following cases:

• The wire load model for the hierarchy is different from the wire
load model of the parent hierarchy.
5-42

Chapter 5: Working With Designs in Memory

A warning message is issued to indicate that the user has
specified different wire loads and the hierarchy cannot be
ungrouped.

You can override this behavior by setting the
compile_auto_ungroup_override_wlm variable to true
(the default is false). The ungrouped child cells of the hierarchy
then inherit the wire load model of the parent hierarchy.
Consequently, the child cells might have a more pessimistic wire
load model. To ensure that the cells that are ungrouped into
different wire load models are updated with the correct delays,
set the auto_ungroup_preserve_constraints variable to
true (in addition to setting the
compile_auto_ungroup_override_wlm variable to true).

• Constraints or timing exceptions are set on pins of the hierarchy.

You can override this behavior by setting the
auto_ungroup_preserve_constraints variable to true.
Design Compiler ungroups the hierarchy and moves timing
constraints to adjacent, persistent pins, that is, pins on the same
net that remain after ungrouping.

For more information on preserving timing constraints, see
“Preserving Hierarchical Pin Timing Constraints During
Ungrouping” on page 5-44.

• The hierarchy has more child cells than that specified by
compile_auto_ungroup_area_num_cells or
compile_auto_ungroup_delay_num_cells.

• The hierarchy has a dont_touch attribute or ungroup attribute.

For more information on these compile variables and options, see
the man pages.
5-43

Changing the Design Hierarchy

Preserving Hierarchical Pin Timing Constraints During
Ungrouping

Hierarchical pins are removed when a cell is ungrouped. Depending
on whether you are ungrouping a hierarchy before optimization or
after optimization, Design Compiler handles timing constraints
placed on hierarchical pins in different ways. The table below
summarizes the effect that ungrouping has on timing constraints
within different compile flows.

Table 5-4 Preserving Hierarchical Pin Timing Constraints

Compile flow Effect on hierarchical pin timing constraints

Ungrouping a hierarchy before
optimization by using ungroup

Timing constraints placed on hierarchical pins
are preserved.

In previous releases, timing attributes placed
on the hierarchical pins of a cell were not
preserved when that cell was ungrouped. If
you want your current optimization results to
be compatible with previous results, set the
ungroup_preserve_constraints variable
to false. The default for this variable is true,
which specifies that timing constraints will be
preserved.

Ungrouping a hierarchy during
optimization by using compile
-ungroup_all or
set_ungroup followed by
compile

Timing constraints placed on hierarchical pins
are not preserved.

To preserve timing constraints, set the
auto_ungroup_preserve_constraints
variable to true.
5-44

Chapter 5: Working With Designs in Memory

When preserving timing constraints, Design Compiler reassigns the
timing constraints to appropriate adjacent, persistent pins (pins on
the same net that remain after ungrouping). The constraints are
moved forward or backward to other pins on the same net. Note that
the constraints can be moved backward only if the pin driving the
given hierarchical pin drives no other pin. Otherwise the constraints
must be moved forward.

If the constraints are moved to a leaf cell, that cell is assigned a
size_only attribute to preserve the constraints during a compile.
Thus, the number of size_only cells can increase, which might
limit the scope of the optimization process. To counter this effect,
when both the forward and backward directions are possible, Design
Compiler chooses the direction that helps limit the number of newly
assigned size_only attributes to leaf cells.

When you apply ungrouping to an unmapped design, the constraints
on a hierarchical pin are moved to a leaf cell and the size_only
attribute is assigned. However, the constraints are preserved
through the compile process only if there is a one-to-one match
between the unmapped cell and a cell from the target library.

Automatically ungrouping a
hierarchy during optimization,
that is, by using compile
-auto_ungroup\ area|delay

Design Compiler does not ungroup the
hierarchy.

To make Design Compiler ungroup the
hierarchy and preserve timing constraints, set
the auto_ungroup_preserve_constraints
variable to true.

Table 5-4 Preserving Hierarchical Pin Timing Constraints(Continued)

Compile flow Effect on hierarchical pin timing constraints
5-45

Changing the Design Hierarchy

Only the timing constraints set with the following commands are
preserved:

• set_false_path

• set_multicycle_path

• set_min_delay

• set_max_delay

• set_input_delay

• set_output_delay

• set_disable_timing

• set_case_analysis

• create_clock

• create_generated_clock

• set_propagated_clock

• set_clock_latency

Note:
The set_rtl_load constraint is not preserved. Also, only the
timing constraints of the current design are preserved. Timing
constraints in other designs might be lost as a result of
ungrouping hierarchy in the current design.

Merging Cells From Different Subdesigns

To merge cells from different subdesigns into a new subdesign,

1. Group the cells into a new design.
5-46

Chapter 5: Working With Designs in Memory

2. Ungroup the new design.

For example, the following command sequence creates a new alu
design that contains the cells that initially were in subdesigns u_add
and u_mult.

dc_shell-xg-t> group {u_add u_mult} -design alu
dc_shell-xg-t> current_design alu
dc_shell-xg-t> ungroup -all
dc_shell-xg-t> current_design top_design

Editing Designs

Design Compiler provides commands for incrementally editing a
design that is in memory. These commands allow you to change the
netlist or edit designs by using dc_shell commands instead of an
external format.

Table 5-5 Design Editing Tasks and Commands

Object Task Command

Cells Create a cell
Delete a cell

create_cell
remove_cell

Nets Create a net
Connect a net
Disconnect a net
Delete a net

create_net
connect_net
disconnect_net
remove_net

Ports Create a port
Delete a port

create_port
remove_port
remove_unconnected_port

Buses Create a bus
Delete a bus

create_bus
remove_bus
5-47

Editing Designs

For unique designs, these netlist editing commands accept instance
objects—that is, cells at a lower level of hierarchy. You can operate
on hierarchical designs from any level in the design without using the
current_design command. For example, you can enter the
following command to create a cell called foo in the design mid1:

dc_shell-xg-t> create_cell mid1/foo my_lib/AND2

Note:
In DB mode, the netlist editing commands do not accept instance
objects. You would issue the following commands to achieve the
same result as in the previous example:

dc_shell> current_design mid1
dc_shell> create_cell foo my_lib/AND2

When connecting or disconnecting nets, use the all_connected
command to see the objects that are connected to a net, port, or pin.
5-48

Chapter 5: Working With Designs in Memory

In Table 5-6, the command sequences shown replace the reference
for cell U8 with a high-power inverter.

Note:
You can achieve the same result by using the change_link
command instead of the series of commands listed in Table 5-6.
For example, the following command replaces the reference for
cell U8 with a high-power inverter:

dc_shell-xg-t> change_link U8 IVP

Table 5-6 Design Editing Examples

dcsh Example dctcl Example

dc_shell> find(pin, U8/*)
{"U8/A", "U8/Z"}

dc_shell> all_connected U8/A
{"n66"}

dc_shell> all_connected U8/Z
{"OUTBUS[10]"}

dc_shell> remove_cell U8
Removing cell ’U8’ in design ’top’.
1

dc_shell> create_cell U8 IVP
Creating cell ’U8’ in design ’top’.
1

dc_shell> connect_net n66 \
find(pin,U8/A)
Connecting net ’n66’ to pin ’U8/A’.
1

dc_shell> connect_net OUTBUS[10] \
find(pin,U8/Z)
Connecting net ’OUTBUS[10]’ to pin
’U8/Z’.
1

dc_shell-xg-t> get_pins U8/*
{"U8/A", "U8/Z"}

dc_shell-xg-t> all_connected U8/A
{"n66"}

dc_shell-xg-t> all_connected U8/Z
{"OUTBUS[10]"}

dc_shell-xg-t> remove_cell U8
Removing cell ’U8’ in design ’top’.
1

dc_shell-xg-t> create_cell U8 IVP
Creating cell ’U8’ in design ’top’.
1

dc_shell-xg-t> connect_net n66 \
[get_pins U8/A]
Connecting net ’n66’ to pin ’U8/A’.
1

dc_shell-xg-t> connect_net
OUTBUS[10] [get_pins U8/Z]
Connecting net ’OUTBUS[10]’ to pin
’U8/Z’.
1

5-49

Editing Designs

Translating Designs From One Technology to Another

You use the translate command to translate a design from one
technology to another.

Designs are translated cell by cell from the original technology library
to a new technology library, preserving the gate structure of the
original design. The translator uses the functional description of
each existing cell (component) to determine the matching
component in the new technology library (target library). If no exact
replacement exists for a component, it is remapped with components
from the target library.

You can influence the replacement-cell selection by preferring or
disabling specific library cells (set_prefer and set_dont_use
commands) and by specifying the types of registers
(set_register_type command). The target libraries are
specified in the target_library variable. The
local_link_library variable of the top-level design is set to the
target_library value after the design is linked.

The translate command does not operate on cells or designs
having the dont_touch attribute. After the translation process,
Design Compiler reports cells that are not successfully translated.

Procedure to Translate Designs

The following procedure works for most designs, but manual
intervention might be necessary for some complex designs.

To translate a design,

1. Read in your mapped design.
5-50

Chapter 5: Working With Designs in Memory

dc_shell-xg-t> read_file design.ddc

or

dc_shell> read_file design.db

2. Set the target library to the new technology library.

dc_shell-xg-t> set target_library target_lib.db

or

dc_shell> target_library = { target_lib.db }

3. Invoke the translate command.

dc_shell-xg-t> translate

After a design is translated, you can optimize it (using the compile
command) to improve the implementation in the new technology
library.

Restrictions on Translating Between Technologies

Keep the following restrictions in mind when you translate a design
from one technology to another:

• The translate command translates functionality logically but
does not preserve drive strength during translation. It always
uses the lowest drive strength version of a cell, which might
produce a netlist with violations.

• When you translate CMOS three-state cells into FPGA,
functional equivalents between the technologies might not exist.
5-51

Translating Designs From One Technology to Another

• Buses driven by CMOS three-state components must be fully
decoded (Design Compiler can assume that only one bus driver
is ever active). If this is the case, bus drivers are translated into
control logic. To enable this feature, set the
compile_assume_fully_decoded_three_state_buses
variable to true before translating.

• If a three-state bus within a design is connected to one or more
output ports, translating the bus to a multiplexed signal changes
the port functionality. Because translate does not change port
functionality, this case is reported as a translation error.

Removing Designs From Memory

The remove_design command removes designs from dc_shell
memory. For example, after completing a compilation session and
saving the optimized design, you can use remove_design to delete
the design from memory before reading in another design.

By default, the remove_design command removes only the
specified design. To remove its subdesigns, specify the
-hierarchy option. To remove all designs (and libraries) from
memory, specify the -all option.

If you defined variables that reference design objects, Design
Compiler removes these references when you remove the design
from memory. This prevents future commands from attempting to
operate on nonexistent design objects.
5-52

Chapter 5: Working With Designs in Memory

Table 5-7 provides dcsh and dctcl examples that show the effects of
the remove_design command.

Saving Designs

You can save (write to disk) the designs and subdesigns of the
design hierarchy at any time, using different names or formats. After
a design is modified, you should manually save it. Design Compiler
does not automatically save designs before it exits.

Table 5-8 lists the design file formats supported by Design Compiler.

Table 5-7 remove_design Examples

dcsh Example dctcl Example

dc_shell> PORTS = all_inputs()
{"A0", "A1", "A2", "A3"}

dc_shell> list PORTS
PORTS = {"A0", "A1", "A2", "A3"}

dc_shell> remove_design
Removing design ’top’
1

dc_shell> list PORTS
PORTS = {}

dc_shell-xg-t> set PORTS [all_inputs]
{"A0", "A1", "A2", "A3"}

dc_shell-xg-t> query_objects $PORTS
PORTS = {"A0", "A1", "A2", "A3"}

dc_shell-xg-t> remove_design
Removing design ’top’
1

dc_shell-xg-t> query_objects $PORTS
Error: No such collection ‘_sel2’ (SEL-001)

Table 5-8 Supported Output Formats

Format Description

.ddc Synopsys internal database format (XG mode only).

Milkyway Format for writing a Milkyway database within Design Compiler (XG mode
only)

.db Synopsys internal database format

EDIF Electronic Design Interchange Format (see the EDIF 2 0 0 Interface User
Guide)
5-53

Saving Designs

Commands to Save Design Files

Design Compiler provides the following ways to save design files:

• The write command

• The write_milkyway command

Using the write Command

You use the write command to convert designs in memory to a
format you specify and save that representation to disk. It is
recommended that in XG mode, you save designs in the .ddc format
rather than the .db format.

.eqn Synopsys equation format

LSI LSI Logic Corporation netlist format

MIF Mentor Intermediate netlist format

PLA Berkeley (Espresso) programmable logic arry format

.st Synopsys State Table format

TDL Tegas Design Language netlist format

Verilog IEEE Standard Verilog (see the HDL Compiler documentation)

VHDL IEEE Standard VHDL (see the HDL Compiler documentation)

Table 5-8 Supported Output Formats (Continued)

Format Description
5-54

Chapter 5: Working With Designs in Memory

Use options to the write command as shown:

Using the write_milkyway Command

In XG mode, you use the write_milkyway command within
dc_shell to write to a Milkyway database. The write_milkyway
command creates a design file based on the netlist in memory and
saves the design data for the current design in that file. For more
information, see the Design Compiler Reference
Manual:Optimization and Timing Analysis.

Saving Designs in .ddc Format

To save the design data in a .ddc file, use the write -format ddc
command.

To do this Use this

Specify a list of designs to save. The default is the
current design

-design_list

Specify the format in which a design is saved. -format
You can specify any of the
output formats listed in
Table 5-8 (except the Milkyway
format; use the
write_milkyway command
instead))

Specify that all designs in the hierarchy are saved -hierarchy

Specify a single file into which designs are wriiten -output

Specify that only modified designs are saved -modified

Specify the name of the library in which the
design is saved

-library
5-55

Saving Designs

By default, the write command saves just the top-level design. To
save the entire design, specify the -hier option. If you do not use
the -output option to specify the output file name, the write
-format ddc command creates a file called top_design.ddc, where
top_design is the name of the current design.

Example 1

The following command writes out all designs in the hierarchy of the
specified design:

dc_shell-xg-t> write -hierarchy -format ddc top
Writing ddc file ‘top.ddc’
Writing ddc file ‘A.ddc’
Writing ddc file ‘B.ddc’

Example 2

The following command writes out multiple designs to a single file:

dc_shell-xg-t> write -format ddc -output test.ddc {ADDER
MULT16}
Writing ddc file ‘test.ddc’

Saving Designs in the .db Format

In XG mode, it is recommended that you save designs in the .ddc
format. However, Design Compiler does allow you to save a design
in the .db format. To do so, enter the following command:

dc_shell-xg-t> write -format db xg_force_db design_file.db

Design Compiler then generates the .db file but also displays a
message that this capability will be removed in a future release. If
you do not use the xg_force_db option, Design Compiler displays
an error message.
5-56

Chapter 5: Working With Designs in Memory

In DB mode, to save a design in the .db format, enter the following
command:

dc_shell> write -format db design_file.db

Converting From .db Format to .ddc Format

To convert your design data from .db format to .ddc format, read the
.db file into dc_shell in XG mode, then save the design in .ddc format
(write -format ddc). To realize the memory savings from using
the .ddc format, you must exit the current shell, then restart the shell
in XG mode and read the .ddc file.

Ensuring Name Consistency Between the Design
Database and the Netlist

Before writing a netlist from within dc_shell, make sure that all net
and port names conform to the naming conventions for your layout
tool. Also ensure that you are using a consistent bus naming style.

Some ASIC and EDA vendors have a program that creates a
.synopsys_dc.setup file that includes the appropriate commands to
convert names to their conventions. If you need to change any net or
port names, use the define_name_rules and change_names
commands.

Naming Rules Section of the .synopsys_dc.setup File

Table 5-9 shows sample naming rules as created by a specific layout
tool vendor. These naming rules do the following:

• Set the bus naming format to bus_name_N or bus_namen_N

• Limit object names to alphanumeric characters
5-57

Saving Designs

• Change DesignWare cell names to valid names (changes “*cell*”
to “U” and "*-return” to “RET”)

Your vendor might use different naming conventions. Check with
your vendor to determine the naming conventions you need to follow.

Using the define_name_rules -map Command

Example 5-1 shows how to use the -map option with
define_name_rules to avoid an error in the format of the string. If
you do not follow this convention, an error appears.

Example 5-1 Using define_name_rules -map
define_name_rules naming_convention -map { {{string1, string2}} } -type \

cell

For example, to remove trailing underscores from cell names, enter

dc_shell-xg-t> define_name_rules naming_convention \-map {
{{_$, ""}} } -type cell

For more information about the define_name_rules command,
see the man page.

Table 5-9 Naming Rules Section of .synopsys_dc.setup File

dcsh Syntax dctcl Syntax

bus_naming_style = %s_%d

define_name_rules simple_names \
-allowed "A-Za-z0-9_" \
-last_restricted "_" \
-first_restricted "_" \
-map { {{"*cell*","U"}, \

{"*-return","RET"}} }

set bus_naming_style %s_%d

define_name_rules simple_names \
-allowed "A-Za-z0-9_" \
-last_restricted "_" \
-first_restricted "_" \
-map { {{"*cell*","U"}, \

{"*-return","RET"}} }
5-58

Chapter 5: Working With Designs in Memory

Resolving Naming Problems in the Flow

You might encounter conflicts in naming conventions in design
objects, input and output files, and tool sets. In the design database
file, you can have many design objects (such as ports, nets, cells,
logic modules, and logic module pins), all with their own naming
conventions. Furthermore, you might be using several input and
output file formats (such as DEF, PDEF, Verilog, and EDIF) in your
flow. Each file format is different and has its own syntax definitions.
Using tool sets from several vendors can introduce additional
naming problems.

To resolve naming issues, use the change_names command to
ensure that all the file names match. Correct naming eliminates
name escaping or mismatch errors in your design.

For more information about the change_names command, see the
man page.

Methodology for Resolving Naming Issues

To resolve naming issues, make the name changes in the design
database file before you write any files. Your initial flow is

1. Read in your design RTL and apply constraints.

No changes to your method need to be made here.

2. Compile the design to produce a gate-level description.

Compile or reoptimize your design as you normally would, using
your standard set of scripts.

3. Apply name changes and resolve naming issues. Use the
change_names command and its Verilog or VHDL switch before
you write the design.
5-59

Saving Designs

Important:

Always use the change_names -rules
-[verilog|vhdl] -hierarchy command whenever you
want to write out a Verilog or VHDL design, because naming in
the design database file is not Verilog or VHDL compliant. For
example, enter

change_names -rules verilog -hierarchy

Important:

If you need to change the bus naming style, you must first
define the new bus naming style, using the
define_name_rules command, and identify the bus naming
style of the current design before you use the change_names
command to define the new bus naming style rule. For
example, to change the bus naming style from %s[%d] to
%s_%d, enter one of the following command sequences
(depending on your command language):

dc_shell-xg-t> define_name_rules new_bus_naming_style
\ -target_bus_naming_style “%s_%d”
dc_shell-xg-t> set bus_naming_style ”%s[%d]”
dc_shell-xg-t> change_names -rule new_bus_naming_style
\ -hierarchy

or

dc_shell> define_name_rules new_bus_naming_style
\ -target_bus_naming_style “%s_%d”
dc_shell> bus_naming_style=”%s[%d]”
dc_shell> change_names -rule new_bus_naming_style
\ -hierarchy

4. Write files to disk. Use the write -format verilog
command.

Look for reported name changes, which indicate you need to
repeat step 3 and refine your name rules.
5-60

Chapter 5: Working With Designs in Memory

5. If all the appropriate name changes have been made, your output
files matches the design database file. Enter the following
commands and compare the output.

write -format verilog -hierarchy -output “consistent.v”
write -format ddc -hierarchy -output “consistent.ddc”

6. Write the files for third-party tools.

If you need more specific naming control, use the
define_name_rules command. See “Using the
define_name_rules -map Command” on page 5-58.

Summary of Commands for Changing Names

Table 5-10 summarizes commands for changing names.

The following special cases apply:

• Synopsys database format is the only output format that can
have designs containing unmapped synthetic library cells.

• The EDIF, LSI, and Mentor formats require a mapped design.

Table 5-10 Summary of Commands for Changing Names

To do this Use this

Change the names of ports, cells, and nets in a
design to be Verilog or VHDL compliant.

change_names

Show effects of change_names without making
the changes.

report_names

Define a set of rules for naming design objects.
Name rules are used by change_names and
report_names.

define_name_rules

List available name rules. report_name_rules
5-61

Saving Designs

• The equation format requires a combinational design.

• Schematics are ignored by equation, LSI, PLA, state table, TDL,
Verilog, and VHDL formats.

• The Mentor format requires schematics.

Working With Attributes

Attributes describe logical, electrical, physical, and other properties
of objects in the design database. An attribute is attached to a design
object and is saved with the design database.

Design Compiler uses attributes on the following types of objects:

• Entire designs

• Design objects, such as clocks, nets, pins, and ports

• Design references and cell instances within a design

• Technology libraries, library cells, and cell pins

An attribute has a name, a type, and a value. Attributes can have the
following types: string, numeric, or logical (Boolean).

Some attributes are predefined and are recognized by Design
Compiler; other attributes are user-defined. Appendix C lists the
predefined attributes.

Some attributes are read-only. Design Compiler sets these attribute
values and you cannot change them. Other attributes are read/write.
You can change these attribute values at any time.
5-62

Chapter 5: Working With Designs in Memory

Most attributes apply to one object type; for example, the
rise_drive attribute applies only to input and inout ports. Some
attributes apply to several object types; for example, the
dont_touch attribute can apply to a net, cell, port, reference, or
design. You can get detailed information about the predefined
attributes that apply to each object type by using the commands
listed in Table 5-11.

Setting Attribute Values

To set the value of an attribute, use one of the following:

• An attribute-specific command

• The set_attribute command

Table 5-11 Commands to Get Attribute Descriptions

Object type Command

All man attributes

Designs man design_attributes

Cells man cell_attributes

Clocks man clock_attributes

Nets man net_attributes

Pins man pin_attributes

Ports man port_attributes

Libraries man library_attributes

Library cells man library_cell_attributes

References man reference_attributes
5-63

Working With Attributes

Using an Attribute-Specific Command

Use an attribute-specific command to set the value of the
command’s associated attribute.

For example,

dc_shell-xg-t> set_dont_touch U1

Using the set_attribute Command

Use this command to set the value of any attribute or to define a new
attribute and set its value.

For example, to set the flatten attribute to false on the design
named top, enter

dc_shell-xg-t> set_attribute top flatten false

The set_attribute command enforces the predefined attribute
type and generates an error if you try to set an attribute with a value
of an incorrect type.

Note:
In DB mode, the set_attribute command does not perform
type checking.

To determine the predefined type for an attribute, use the
list_attributes -application command. This command
generates a list of all application attributes and their types. To
generate a smaller report, you can use the -class attribute to limit
the list to attributes that apply to one of the following classes: design,
port, cell, clock, pin, net, lib, or reference.
5-64

Chapter 5: Working With Designs in Memory

For example, the max_fanout attribute has a predefined type of
float. Suppose you enter the following command, Design Compiler
displays an error message:

set_attribute lib/lcell/lpin max_fanout 1 -type integer

If an attribute applies to more than one object type, Design Compiler
searches the database for the named object. For information about
the search order, see “The Object Search Order” on page 5-68.

When you set an attribute on a reference (subdesign or library cell),
the attribute applies to all cells in the design with that reference.
When you set an attribute on an instance (cell, net, or pin), the
attribute overrides any attribute inherited from the instance’s
reference.

Viewing Attribute Values

To see all attributes on an object, use the report_attribute
command.

dc_shell-xg-t> report_attribute -obj_type object

To see the value of a specific attribute on an object, use the
get_attribute command.

For example, to get the value of the maximum fanout on port OUT7,
enter

dc_shell-xg-t> get_attribute OUT7 max_fanout
Performing get_attribute on port ’OUT7’.
{3.000000}
5-65

Working With Attributes

If an attribute applies to more than one object type, Design Compiler
searches the database for the named object. For information about
the search order, see “The Object Search Order” on page 5-68.

Saving Attribute Values

Design Compiler does not automatically save attribute values when
you exit dc_shell. Use the write_script command to generate a
dc_shell script that re-creates the attribute values.

Note:
The write_script command does not support user-defined
attributes.

By default, write_script prints to the screen. Use the redirection
operator (>) to redirect the output to a file.

dc_shell-xg-t> write_script > attr.scr

Defining Attributes

The set_attribute command enables you to create new
attributes. Use the set_attribute command described in “Using
the set_attribute Command” on page 5-64.

If you want to change the value of an attribute, remove the attribute
and then re-create it to store the desired type.

Removing Attributes

To remove a specific attribute from an object, use the
remove_attribute command.
5-66

Chapter 5: Working With Designs in Memory

You cannot use the remove_attribute command to remove
inherited attributes. For example, if a dont_touch attribute is
assigned to a reference, remove the attribute from the reference, not
from the cells that inherited the attribute.

For example, to remove the max_fanout attribute from port OUT7,
enter

dc_shell-xg-t> remove_attribute OUT7 max_fanout

You can remove selected attributes by using the remove_*
commands. Note that some attributes still require the set_*
command with a -default option specified to remove the attribute
previously set by the command. See the man page for a specific
command to determine whether it has the -default option or uses
a corresponding remove command.

To remove all attributes from the current design, use the
reset_design command.

dc_shell-xg-t> reset_design
Resetting current design ’EXAMPLE’.
1

The reset_design command removes all design information,
including clocks, input and output delays, path groups, operating
conditions, timing ranges, and wire load models. The result of using
reset_design is often equivalent to starting the design process
from the beginning.
5-67

Working With Attributes

The Object Search Order

When Design Compiler searches for an object, the search order is
command dependent. (Objects include designs, cells, nets,
references, and library cells.)

If you do not use a get (dctcl) or find (dcsh) command, Design
Compiler uses an implicit find to locate the object. Commands that
can set an attribute on more than one type of object use this search
order to determine the object to which the attribute applies.

For example, the set_dont_touch command operates on cells,
nets, references, and library cells. If you define an object, X, with the
set_dont_touch command and two objects (such as the design
and a cell) are named X, Design Compiler applies the attribute to the
first object type found. (In this case, the attribute is set on the design,
not on the cell.)

Design Compiler searches until it finds a matching object, or it
displays an error message if it does not find a matching object.

You can override the default search order by using the dcsh find
command or the dctcl get_* command to specify the object.

For example, assume that the current design contains both a cell and
a net named critical. The following command sets the dont_touch
attribute on the cell because of the default search order:

dc_shell-xg-t> set_dont_touch critical
1

In DB mode (dcsh command language), Design Compiler echoes
the type of object on which an attribute is set. (If you do not want the
echo, set verbose_messages to false.)
5-68

Chapter 5: Working With Designs in Memory

dc_shell> set_dont_touch X
Performing set_dont_touch on design ’X’.
1

Note:
The status message is not displayed in dctcl. For predictable
results, use the get_* command to specify the object in dctcl.

To place the dont_touch attribute on the net instead, use one of
the following commands (depending on your command language):

dc_shell-xg-t> set_dont_touch [get_nets critical]
1

dc_shell> set_dont_touch find(net, critical)
Performing set_dont_touch on net ’critical’.
1

5-69

Working With Attributes

5-70

Chapter 5: Working With Designs in Memory

6
Defining the Design Environment 6

Before a design can be optimized, you must define the environment
in which the design is expected to operate. You define the
environment by specifying operating conditions, wire load models,
and system interface characteristics.

Operating conditions include temperature, voltage, and process
variations. Wire load models estimate the effect of wire length on
design performance. System interface characteristics include input
drives, input and output loads, and fanout loads. The environment
model directly affects design synthesis results.

In Design Compiler, the model is defined by a set of attributes and
constraints that you assign to the design, using specific dc_shell
commands. Figure 6-1 illustrates the commands used to define the
design environment.
6-1

Figure 6-1 Commands Used to Define the Design Environment

This chapter contains the following sections:

• Defining the Operating Conditions

• Defining Wire Load Models

• Modeling the System Interface

set_drive

set_driving_cell

set_fanout_load

set_load

set_operating_conditions

set_load set_wire_load_model
6-2

Chapter 6: Defining the Design Environment

Defining the Operating Conditions

In most technologies, variations in operating temperature, supply
voltage, and manufacturing process can strongly affect circuit
performance (speed). These factors, called operating conditions,
have the following general characteristics:

• Operating temperature variation

Temperature variation is unavoidable in the everyday operation of
a design. Effects on performance caused by temperature
fluctuations are most often handled as linear scaling effects, but
some submicron silicon processes require nonlinear
calculations.

• Supply voltage variation

The design’s supply voltage can vary from the established ideal
value during day-to-day operation. Often a complex calculation
(using a shift in threshold voltages) is employed, but a simple
linear scaling factor is also used for logic-level performance
calculations.

• Process variation

This variation accounts for deviations in the semiconductor
fabrication process. Usually process variation is treated as a
percentage variation in the performance calculation.

When performing timing analysis, Design Compiler must consider
the worst-case and best-case scenarios for the expected variations
in the process, temperature, and voltage factors.
6-3

Defining the Operating Conditions

Determining Available Operating Condition Options

Most technology libraries have predefined sets of operating
conditions. Use the report_lib command to list the operating
conditions defined in a technology library. The library must be loaded
in memory before you can run the report_lib command. To see
the list of libraries loaded in memory, use the list_libraries or
the list_libs command.

For example, to generate a report for the library my_lib, which is
stored in my_lib.db, enter the following commands:

dc_shell-xg-t> read_file my_lib.db
dc_shell-xg-t> report_lib my_lib

Example 6-1 shows the resulting operating conditions report.

Example 6-1 Operating Conditions Report
**
Report : library
Library: my_lib
Version: X-2005.09
Date : Mon Jan 13 10:56:49 2005
**
...
Operating Conditions:

 Name Library Process Temp Volt Interconnect Model

 WCCOM my_lib 1.50 70.00 4.75 worst_case_tree
 WCIND my_lib 1.50 85.00 4.75 worst_case_tree
 WCMIL my_lib 1.50 125.00 4.50 worst_case_tree
...
6-4

Chapter 6: Defining the Design Environment

Specifying Operating Conditions

If the technology library contains operating condition specifications,
you can let Design Compiler use them as default conditions.
Alternatively, you can use the set_operating_conditions
command to specify explicit operating conditions, which supersede
the default library conditions.

For example, to set the operating conditions for the current design to
worst-case commercial, enter

dc_shell-xg-t> set_operating_conditions WCCOM -lib my_lib

Use the report_design command to see the operating conditions
defined for the current design.

Defining Wire Load Models

Wire load modeling allows you to estimate the effect of wire length
and fanout on the resistance, capacitance, and area of nets. Design
Compiler uses these physical values to calculate wire delays and
circuit speeds.

Semiconductor vendors develop wire load models, based on
statistical information specific to the vendors’ process. The models
include coefficients for area, capacitance, and resistance per unit
length, and a fanout-to-length table for estimating net lengths (the
number of fanouts determines a nominal length).

Note:
You can also develop custom wire load models. For more
information about developing wire load models, see the Library
Compiler documentation.
6-5

Defining Wire Load Models

In the absence of back-annotated wire delays, Design Compiler uses
the wire load models to estimate net wire lengths and delays. Design
Compiler determines which wire load model to use for a design,
based on the following factors, listed in order of precedence:

1. Explicit user specification

2. Automatic selection based on design area

3. Default specification in the technology library

If none of this information exists, Design Compiler does not use a
wire load model. Without a wire load model, Design Compiler does
not have complete information about the behavior of your target
technology and cannot compute loading or propagation times for
your nets; therefore, your timing information will be optimistic.

In hierarchical designs, Design Compiler must also determine which
wire load model to use for nets that cross hierarchical boundaries.
The tool determines the wire load model for cross-hierarchy nets
based on one of the following factors, listed in order of precedence:

1. Explicit user specification

2. Default specification in the technology library

3. Default mode in Design Compiler

The following sections discuss the selection of wire load models for
nets and designs.
6-6

Chapter 6: Defining the Design Environment

Hierarchical Wire Load Models

Design Compiler supports three modes for determining which wire
load model to use for nets that cross hierarchical boundaries:

• Top

Design Compiler models nets as if the design has no hierarchy
and uses the wire load model specified for the top level of the
design hierarchy for all nets in a design and its subdesigns. The
tool ignores any wire load models set on subdesigns with the
set_wire_load_model command.

Use top mode if you plan to flatten the design at a higher level of
hierarchy before layout.

• Enclosed

Design Compiler uses the wire load model of the smallest design
that fully encloses the net. If the design enclosing the net has no
wire load model, the tool traverses the design hierarchy upward
until it finds a wire load model. Enclosed mode is more accurate
than top mode when cells in the same design are placed in a
contiguous region during layout.

Use enclosed mode if the design has similar logical and physical
hierarchies.

• Segmented

Design Compiler determines the wire load model of each
segment of a net by the design encompassing the segment. Nets
crossing hierarchical boundaries are divided into segments. For
each net segment, Design Compiler uses the wire load model of
6-7

Defining Wire Load Models

the design containing the segment. If the design contains a
segment that has no wire load model, the tool traverses the
design hierarchy upward until it finds a wire load model.

Use segmented mode if the wire load models in your technology
have been characterized with net segments.

Figure 6-2 shows a sample design with a cross-hierarchy net,
cross_net. The top level of the hierarchy (design TOP) has a wire
load model of 50x50. The next level of hierarchy (design MID) has a
wire load model of 40x40. The leaf-level designs, A and B, have wire
load models of 20x20 and 30x30, respectively.

Figure 6-2 Comparison of Wire Load Mode

In top mode, Design Compiler estimates the wire length of net
cross_net, using the 50x50 wire load model. Design Compiler
ignores the wire load models on designs MID, A, and B.

50X50

30X3020X20

TOP
MID

A B

40X40

50X50

30X3020X20

TOP

MID
A B

40X40

50X50

30X3020X20

TOP
MID

A B

40X40

mode = top

mode = enclosed mode = segmented
50X50

40X40 40X4020X20 30X30
6-8

Chapter 6: Defining the Design Environment

In enclosed mode, Design Compiler estimates the wire length of net
cross_net, using the 40x40 wire load model (the net cross_net is
completely enclosed by design MID).

In segmented mode, Design Compiler uses the 20x20 wire load
model for the net segment enclosed in design A, the 30x30 wire load
model for the net segment enclosed in design B, and the 40x40 wire
load model for the segment enclosed in design MID.

Determining Available Wire Load Models

Most technology libraries have predefined wire load models. Use the
report_lib command to list the wire load models defined in a
technology library. The library must be loaded in memory before you
run the report_lib command. To see a list of libraries loaded in
memory, use the list_libs command.

The wire load report contains the following sections:

• Wire Loading Model section

This section lists the available wire load models.

• Wire Loading Model Mode section

This section identifies the default wire load mode. If a library
default does not exist, Design Compiler uses top mode.

• Wire Loading Model Selection Group section

The presence of this section indicates that the library supports
automatic area-based wire load model selection.

To generate a wire load report for the my_lib library, enter

dc_shell-xg-t> read_file my_lib.db
6-9

Defining Wire Load Models

dc_shell-xg-t> report_lib my_lib

Example 6-2 shows the resulting wire load models report. The library
my_lib contains three wire load models: 05x05, 10x10, and 20x20.
The library does not specify a default wire load mode (so Design
Compiler uses top as the default wire load mode), and it supports
automatic area-based wire load model selection.

Example 6-2 Wire Load Models Report
**
Report : library
Library: my_lib
Version: 1999.05
Date : Mon Jan 4 10:56:49 1999
**
...
Wire Loading Model:

Name : 05x05
Location : my_lib
Resistance : 0
Capacitance : 1
Area : 0
Slope : 0.186
Fanout Length Points Average Cap Std Deviation
--
 1 0.39

Name : 10x10
Location : my_lib
Resistance : 0
Capacitance : 1
Area : 0
Slope : 0.311
Fanout Length Points Average Cap Std Deviation
--
 1 0.53
6-10

Chapter 6: Defining the Design Environment

Example 6-2 Wire Load Models Report (Continued)
Name : 20x20
Location : my_lib
Resistance : 0
Capacitance : 1
Area : 0
Slope : 0.547
Fanout Length Points Average Cap Std Deviation
--
 1 0.86
Wire Loading Model Selection Group:

 Name : my_lib

 Selection Wire load name
 min area max area

 0.00 1000.00 05x05
 1000.00 2000.00 10x10
 2000.00 3000.00 20x20
...

Specifying Wire Load Models and Modes

The technology library can define a default wire load model that is
used for all designs implemented in that technology. The
default_wire_load library attribute identifies the default wire
load model for a technology library.

Some libraries support automatic area-based wire load selection.
Design Compiler uses the library function wire_load_selection
to choose a wire load model based on the total cell area.

For large designs with many levels of hierarchy, automatic wire load
selection can increase runtime. To manage runtime, set the wire load
manually.
6-11

Defining Wire Load Models

You can turn off automatic selection of the wire load model by setting
the auto_wire_load_selection variable to false. For example,
enter one of the following commands (depending on your command
language):

dc_shell-xg-t> set auto_wire_load_selection false

dc_shell> auto_wire_load_selection = false

The technology library can also define a default wire load mode. The
default_wire_load_mode library attribute identifies the default
mode. If the current library does not define a default mode, Design
Compiler looks for the attribute in the libraries specified in the
link_library variable. (To see the link library, use the list
command.) In the absence of a library default (and an explicit
specification), Design Compiler uses that top mode.

To change the wire load model or mode specified in a technology
library, use the set_wire_load_model and
set_wire_load_mode commands. The wire load model and mode
you define override all defaults. Explicitly selecting a wire load model
also disables area-based wire load model selection for that design.

For example, to select the 10x10 wire load model, enter

dc_shell-xg-t> set_wire_load_model "10x10"

To select the 10x10 wire load model and specify enclosed mode,
enter

dc_shell-xg-t> set_wire_load_mode enclosed

The wire load model you choose for a design depends on how that
design is implemented in the chip. Consult your semiconductor
vendor to determine the best wire load model for your design.
6-12

Chapter 6: Defining the Design Environment

Use the report_design or report_timing commands to see
the wire load model and mode defined for the current design.

To remove the wire load model, use the
remove_wire_load_model command with no model name.

Modeling the System Interface

Design Compiler supports the following ways to model the design’s
interaction with the external system:

• Defining drive characteristics for input ports

• Defining loads on input and output ports

• Defining fanout loads on output ports

The following sections discuss these tasks.

Defining Drive Characteristics for Input Ports

Design Compiler uses drive strength information to buffer nets
appropriately in the case of a weak driver.

Note:
Drive strength is the reciprocal of the output driver resistance,
and the transition time delay at an input port is the product of the
drive resistance and the capacitance load of the input port.

By default, Design Compiler assumes zero drive resistance on input
ports, meaning infinite drive strength. There are three commands for
overriding this unrealistic assumption:

• set_driving_cell
6-13

Modeling the System Interface

• set_drive

• set_input_transition

Both the set_driving_cell and set_input_transition
commands affect the port transition delay, but they do not place
design rule requirements, such as max_fanout and
max_transition, on input ports. However, the
set_driving_cell command does place design rules on input
ports if the driving cell has DRCs.

Note:
For heavily loaded driving ports, such as clock lines, keep the
drive strength setting at 0 so that Design Compiler does not
buffer the net. Each semiconductor vendor has a different way of
distributing these signals within the silicon.

Both the set_drive and the set_driving_cell commands
affect the port transition delay. The set_driving_cell command
can place design rule requirements, such as max_fanout or
max_transition, on input ports if the specified cell has input
ports.

The most recently used command takes precedence. For example,
setting a drive resistance on a port with the set_drive command
overrides previously run set_driving_cell commands.

The set_driving_cell Command

Use the set_driving_cell command to specify drive
characteristics on ports that are driven by cells in the technology
library. This command is compatible with all the delay models,
including the nonlinear delay model and piecewise linear delay
6-14

Chapter 6: Defining the Design Environment

model. The set_driving_cell command associates a library pin
with an input port so that delay calculators can accurately model the
drive capability of an external driver.

Use the remove_driving_cell command or reset_design
command to remove driving cell attributes on ports.

The set_drive and set_input_transition Commands

Use the set_drive or set_input_transition command to set
the drive resistance on the top-level ports of the design when the
input port drive capability cannot be characterized with a cell in the
technology library.

You can use set_drive and the drive_of commands together to
represent the drive resistance of a cell. However, these commands
are not as accurate for nonlinear delay models as the
set_driving_cell command is.

Figure 6-3 shows a hierarchical design. The top-level design has two
subdesigns, U1 and U2. Ports I1 and I2 of the top-level design are
driven by the external system and have a drive resistance of 1.5.
6-15

Modeling the System Interface

Figure 6-3 Drive Characteristics

To set the drive characteristics for this example, follow these steps:

1. Because ports I1 and I2 are not driven by library cells, use the
set_drive command to define the drive resistance. Enter

dc_shell-xg-t> current_design top_level_design
dc_shell-xg-t> set_drive 1.5 {I1 I2}

2. To describe the drive capability for the ports on design
sub_design2, change the current design to sub_design2. Enter

dc_shell-xg-t> current_design sub_design2

3. An IV cell drives port I3. Use the set_driving_cell command
to define the drive resistance. Because IV has only one output
and one input, define the drive capability as follows. Enter

dc_shell-xg-t> set_driving_cell -lib_cell IV {I3}

AN2

IV I3

I4

U1 U2

PAD

PAD

External

System

sub_design1 sub_design2

set_driving_cell

set_drive

1.5

1.5

top_level_design

logic

I2

I1
6-16

Chapter 6: Defining the Design Environment

4. An AN2 cell drives port I4. Because the different arcs of this cell
have different transition times, select the worst-case arc to define
the drive. For checking setup violations, the worst-case arc is the
slowest arc. For checking hold violations, the worst-case arc is
the fastest arc.

For this example, assume that you want to check for setup
violations. The slowest arc on the AN2 cell is the B-to-Z arc, so
define the drive as follows. Enter

dc_shell-xg-t> set_driving_cell -lib_cell AN2 -pin Z \
-from_pin B {I4}

Defining Loads on Input and Output Ports

By default, Design Compiler assumes zero capacitive load on input
and output ports. Use the set_load command to set a capacitive
load value on input and output ports of the design. This information
helps Design Compiler select the appropriate cell drive strength of
an output pad and helps model the transition delay on input pads.

For example, to set a load of 30 on output pin out1, enter

dc_shell-xg-t> set_load 30 {out1}

Make the units for the load value consistent with the target
technology library. For example, if the library represents the load
value in picofarads, the value you set with the set_load command
must be in picofarads. Use the report_lib command to list the
library units.

Example 6-3 shows the library units for the library my_lib.
6-17

Modeling the System Interface

Example 6-3 Library Units Report

**
Report : library
Library: my_lib
Version: 1999.05
Date : Mon Jan 4 10:56:49 1999
**

Library Type : Technology
Tool Created : 1999.05
Date Created : February 7, 1992
Library Version : 1.800000
Time Unit : 1ns
Capacitive Load Unit : 0.100000ff
Pulling Resistance Unit : 1kilo-ohm
Voltage Unit : 1V
Current Unit : 1uA
...

Defining Fanout Loads on Output Ports

You can model the external fanout effects by specifying the expected
fanout load values on output ports with the set_fanout_load
command.

For example, enter

dc_shell-xg-t> set_fanout_load 4 {out1}

Design Compiler tries to ensure that the sum of the fanout load on
the output port plus the fanout load of cells connected to the output
port driver is less than the maximum fanout limit of the library, library
cell, and design. (For more information about maximum fanout limits,
see “Setting Design Rule Constraints” on page 7-3.)
6-18

Chapter 6: Defining the Design Environment

Fanout load is not the same as load. Fanout load is a unitless value
that represents a numerical contribution to the total fanout. Load is a
capacitance value. Design Compiler uses fanout load primarily to
measure the fanout presented by each input pin. An input pin
normally has a fanout load of 1, but it can have a higher value.
6-19

Modeling the System Interface

6-20

Chapter 6: Defining the Design Environment

7
Defining Design Constraints 7

In addition to specifying the design environment, you must set design
constraints before compiling the design. There are two categories of
design constraints:

• Design rule constraints

• Design optimization constraints

Design rule constraints are supplied in the technology library you
specify. They are referred to as the implicit design rules. These rules
are established by the library vendor, and, for the proper functioning
of the fabricated circuit, they must not be violated. You can, however,
specify stricter design rules if appropriate. The rules you specify are
referred to as the explicit design rules.

Design optimization constraints define timing and area optimization
goals for Design Compiler. These constraints are user-specified.
Design Compiler optimizes the synthesis of the design, in
7-1

accordance with these constraints, but not at the expense of the
design rule constraints. That is, Design Compiler attempts never to
violate the higher-priority design rules.

Note:
In this chapter, setting explicit design rules and optimization
constraints is discussed without reference to the particular
compile strategy you choose. But the compile strategy you
choose does influence your constraint settings.

This chapter contains the following sections:

• Setting Design Rule Constraints

• Setting Optimization Constraints

• Verifying the Precompiled Design

The task of setting timing constraints can be complicated (especially
setting the timing exceptions) and includes the following tasks:

• Defining a Clock

• Specifying I/O Timing Requirements

• Specifying Combinational Path Delay Requirements

• Specifying Timing Exceptions
7-2

Chapter 7: Defining Design Constraints

Setting Design Rule Constraints

This section discusses the most commonly specified design rule
constraints:

• Transition time

• Fanout load

• Capacitance

Design Compiler also supports cell degradation and connection
class constraints. For information about these constraints, see the
Design Compiler Reference Manual: Constraints and Timing.

Design Compiler uses attributes assigned to the design’s objects to
represent design rule constraints. Table 7-1 provides the attribute
name that corresponds to each design rule constraint.

Design rule constraints are attributes specified in the technology
library and, optionally, specified by you explicitly.

Table 7-1 Design Rule Attributes

Design rule constraint Attribute name

Transition time max_transition

Fanout load max_fanout

Capacitance max_capacitance
min_capacitance

Cell degradation cell_degradation

Connection class connection_class
7-3

Setting Design Rule Constraints

If a technology library defines these attributes, Design Compiler
implicitly applies them to any design using that library when it
compiles the design or creates a constraint report. You cannot
remove the design rule attributes defined in the technology library,
because they are requirements for the technology, but you can make
them more restrictive to suit your design.

If both implicit and explicit design rule constraints apply to a design
or a net, the more restrictive value takes precedence.

Setting Transition Time Constraints

The transition time of a net is the time required for its driving pin to
change logic values. This transition time is based on the technology
library data. For the nonlinear delay model (NLDM), output transition
time is a function of input transition and output load.

Design Compiler and Library Compiler model transition time
restrictions by associating a max_transition attribute with each
output pin on a cell. During optimization, Design Compiler attempts
to make the transition time of each net less than the value of the
max_transition attribute.

To change the maximum transition time restriction specified in a
technology library, use the set_max_transition command. This
command sets a maximum transition time for the nets attached to the
identified ports or to all the nets in a design by setting the
max_transition attribute on the named objects.
7-4

Chapter 7: Defining Design Constraints

For example, to set a maximum transition time of 3.2 on all nets in
the design adder, enter one of the following commands (depending
on your command language):

dc_shell-xg-t> set_max_transition 3.2 [get_designs adder]

dc_shell> set_max_transition 3.2 find(design,adder)

To undo a set_max_transition command, use the
remove_attribute command. For example, enter one of the
following commands (depending on your command language):

dc_shell-xg-t>remove_attribute [get_designs adder] \
max_transition

dc_shell>remove_attribute find(design,adder) \
max_transition

Setting Fanout Load Constraints

The maximum fanout load for a net is the maximum number of loads
the net can drive.

Design Compiler and Library Compiler model fanout restrictions by
associating a fanout_load attribute with each input pin and a
max_fanout attribute with each output (driving) pin on a cell.

The fanout load value does not represent capacitance; it represents
the weighted numerical contribution to the total fanout load. The
fanout load imposed by an input pin is not necessarily 1.0. Library
developers can assign higher fanout load values to model internal
cell fanout effects.
7-5

Setting Design Rule Constraints

Design Compiler calculates the fanout of a driving pin by adding the
fanout_load values of all inputs driven by that pin. To determine
whether the pin meets the maximum fanout load restriction, Design
Compiler compares the calculated fanout load value with the pin’s
max_fanout value.

Figure 7-1 shows a small circuit in which pin X drives two loads, pin
A and pin B. If pin A has a fanout_load value of 1.0 and pin B has
a fanout_load value of 2.0, the total fanout load of pin X is 3.0. If
pin X has a maximum fanout greater than 3.0, say 16.0, the pin
meets the fanout constraints.

Figure 7-1 Fanout Constraint Example

During optimization, Design Compiler attempts to meet the fanout
load restrictions for each driving pin. If a pin violates its fanout load
restriction, Design Compiler tries to correct the problem (for
example, by changing the drive strength of the component).

The technology library might specify default fanout constraints on the
entire library or fanout constraints for specific pins in the library
description of an individual cell.

X

A

B

7-6

Chapter 7: Defining Design Constraints

To determine whether your technology library is modeled for fanout
calculations, you can search for the fanout_load attribute on the
cell input pins by entering one of the following commands
(depending on your command language):

dc_shell-xg-t> get_attribute [get_pins my_lib/*/*] \
fanout_load

dc_shell> get_attribute find(pin, my_lib/*/*) fanout_load

To set a more conservative fanout restriction than that specified in
the technology library, use the set_max_fanout command on the
design or on an input port. (Use the set_fanout_load command
to set the expected fanout load value for output ports.)

The set_max_fanout command sets the maximum fanout load for
the specified input ports or for all the nets in a design by setting the
max_fanout attribute on the specified objects. For example, to set
a max_fanout requirement of 16 on all nets in the design adder,
enter one of the following commands (depending on your command
language):

dc_shell-xg-t> set_max_fanout 16 [get_designs adder]

dc_shell> set_max_fanout 16 find(design, adder)

If you use the set_max_fanout command and a library
max_fanout attribute exists, Design Compiler tries to meet the
smaller (more restrictive) fanout limit.
7-7

Setting Design Rule Constraints

To undo a set_max_fanout command, use the
remove_attribute command. For example, enter one of the
following commands (depending on your command language):

dc_shell> remove_attribute find(design,adder) max_fanout

dc_shell-xg-t> remove_attribute [get_designs adder]\
max_fanout

Setting Capacitance Constraints

The transition time constraints do not provide a direct way to control
the actual capacitance of nets. If you need to control capacitance
directly, use the set_max_capacitance command to set the
maximum capacitance constraint on input ports or designs. This
constraint is completely independent, so you can use it in addition to
the transition time constraints.

Design Compiler and Library Compiler model capacitance
restrictions by associating the max_capacitance attribute with the
output ports or pins of a cell. Design Compiler calculates the
capacitance on a net by adding the wire capacitance of the net to the
capacitance of the pins attached to the net. To determine whether a
net meets the capacitance constraint, Design Compiler compares
the calculated capacitance value with the max_capacitance value
of the pin driving the net.

For example, to set a maximum capacitance of 3 for all nets in the
design adder, enter one of the following commands (depending on
your command language):

dc_shell-xg-t> set_max_capacitance 3 [get_designs adder]

dc_shell> set_max_capacitance 3 find(design,adder)
7-8

Chapter 7: Defining Design Constraints

To undo a set_max_capacitance command, use the
remove_attribute command. For example, enter one of the
following commands (depending on your command language):

dc_shell-xg-t> remove_attribute [get_designs adder] \
max_capacitance

dc_shell> remove_attribute find(design,adder) \
max_capacitance

You can also use the set_min_capacitance command to define
the minimum capacitance for input ports or pins. Design Compiler
attempts to ensure that the load seen at the input port does not fall
below the specified capacitance value, but it does not specifically
optimize for this constraint.

Setting Optimization Constraints

This section discusses the most commonly specified optimization
constraints:

• Timing constraints

• Area constraints

Design Compiler also supports power constraints. For information
about power constraints, see the Power Compiler Reference
Manual.

Figure 7-2 illustrates some of the common commands used to define
the optimization constraints.
7-9

Setting Optimization Constraints

Figure 7-2 Commands Used to Define the Optimization Constraints for
Sequential Blocks

Setting Timing Constraints

Timing constraints specify the required performance of the design.
To set the timing constraints,

1. Define the clocks.

2. Specify the I/O timing requirements relative to the clocks.

3. Specify the combinational path delay requirements.

4. Specify the timing exceptions.

Table 7-2 lists the most commonly used commands for these steps.

Table 7-2 Commands to Set Timing Constraints

Command Description

create_clock Defines the period and waveform for the clock.

set_clock_latency
set_propagated_clock
set_clock_uncertainty

Defines the clock delay.

set_input_delay set_output_delay

set_max_area

create_clock
set_clock_latency

 set_propagated_clock
set_clock_uncertainty
7-10

Chapter 7: Defining Design Constraints

The following sections describe these steps in more detail.

Defining a Clock

For synchronous designs, the clock period is the most important
constraint because it constrains all register-to-register paths in the
design.

Defining the Period and Waveform for the Clock. Use the
create_clock command to define the period (-period option)
and waveform (-waveform option) for the clock. If you do not
specify the clock waveform, Design Compiler uses a 50 percent duty
cycle.

set_input_delay Defines the timing requirements for input ports
relative to the clock period.

set_output_delay Defines the timing requirements for output ports
relative to the clock period.

set_max_delay Defines maximum delay for combinational paths.
(This is a timing exception command.)

set_min_delay Defines minimum delay for combinational paths.
(This is a timing exception command.)

set_false_path Specifies false paths. (This is a timing exception
command.)

set_multicycle_path Specifies multicycle paths. (This is a timing
exception command.)

Table 7-2 Commands to Set Timing Constraints (Continued)

Command Description
7-11

Setting Optimization Constraints

Use the create_clock command on a pin or a port. For example,
to specify a 25-megahertz clock on port clk with a 50 percent duty
cycle, enter

dc_shell-xg-t> create_clock clk -period 40

When your design contains multiple clocks, pay close attention to the
common base period of the clocks. The common base period is the
least common multiple of all the clock periods. For example, if you
have clock periods of 10, 15, and 20, the common base period is 60.

Define your clocks so that the common base period is a small integer
multiple of each of the clock periods. The common base period
requirement is qualitative; no hard limit exists. If the base period is
more than 10 times larger than the smallest period, however, long
runtimes and greater memory requirements can result.

As an extreme case, if you have a register-to-register path where one
register has a period of 10 and the other has a period of 10.1, the
common base period is 1010.0. The timing analyzer calculates the
setup requirement for this path by expanding both clocks to the
common base period and determining the tightest single-cycle
relationship for setup. Internally, for extreme cases such as this, the
timing analyzer only approximates the setup requirement because
the paths are not really synchronous.

You can work around this problem by specifying a clock period
without a decimal point and adjusting the clock period by inserting
clock uncertainty.

dc_shell-xg-t> create_clock -period 10 clk1
dc_shell-xg-t> create_clock -period 10 clk2
dc_shell-xg-t> set_clock_uncertainty -setup 0.1 clk2
7-12

Chapter 7: Defining Design Constraints

Use the report_clock command to show information about all
clock sources in your design.

Use the remove_clock command to remove a clock definition.

Creating a Virtual Clock. In some cases, a system clock might not
exist in a block. You can use the create_clock -name command
to create a virtual clock for modeling clock signals present in the
system but not in the block. By creating a virtual clock, you can
represent delays that are relative to clocks outside the block.

dc_shell-xg-t> create_clock -period 30 -waveform {10 25} \
-name sys_clk

Specifying Clock Network Delay. By default, Design Compiler
assumes that clock networks have no delay (ideal clocks). Use the
set_clock_latency and set_clock_uncertainty
commands to specify timing information about the clock network
delay. You can use these commands to specify either estimated or
actual delay information.

Use the set_propagated_clock command to specify that you
want the clock latency to propagate through the clock network. For
example,

dc_shell-xg-t> set_propagated_clock clk

Use the -setup or -hold options of the
set_clock_uncertainty command to add some margin of error
into the system to account for variances in the clock network
resulting from layout. For example, on the 20-megahertz clock
mentioned previously, to add a 0.2 margin on each side of the clock
edge, enter
7-13

Setting Optimization Constraints

dc_shell-xg-t> set_clock_uncertainty -setup 0.2 clk
dc_shell-xg-t> set_clock_uncertainty -hold 0.2 clk

Use the -skew option of the report_clock command to show
clock network skew information. Design Compiler uses the clock
information when determining whether a path meets setup and hold
requirements.

Specifying I/O Timing Requirements

If you do not assign timing requirements to an input port, Design
Compiler responds as if the signal arrives at the input port at time 0.
In most cases, input signals arrive at staggered times. Use the
set_input_delay command to define the arrival times for input
ports. You define the input delay constraint relative to the system
clock and to the other inputs.

If you do not assign timing requirements to an output port, Design
Compiler does not constrain any paths which end at an output port.
Use the set_output_delay command to define the required
output arrival time. You define the output delay constraint relative to
the system clock.

If an input or output port has multiple timing requirements (because
of multiple paths), use the -add_delay option to specify the
additional timing requirements.

Use the report_port command to list input or output delays
associated with ports.

Use the remove_input_delay command to remove input delay
constraints. Use the remove_output_delay command to remove
output delay constraints.
7-14

Chapter 7: Defining Design Constraints

Figure 7-3 shows the timing relationship between the delay and the
active clock edge (the rising edge in this example).

Figure 7-3 Relationship Between Delay and Active Clock Edge

In the figure, block A has an input DATA_IN and an output
DATA_OUT. From the waveform diagram, DATA_IN is stable 20 ns
after the clock edge, and DATA_OUT needs to be available 15 ns
before the clock edge.

After you set the clock constraint by using the create_clock
command, use the set_input_delay and set_output_delay
commands to specify these additional requirements. For example,
enter

dc_shell-xg-t> set_input_delay 20 -clock CLK DATA_IN
dc_shell-xg-t> set_output_delay 15 -clock CLK DATA_OUT

Figure 7-4 illustrates the timing requirements for the constrained
design block my_block. Example 7-1 shows the script used to
specify these timing requirements.

CLK

DATA_IN

DATA_OUT

20 ns 15 ns

Block A

CLK

DATA_IN

DATA_OUT
7-15

Setting Optimization Constraints

Figure 7-4 Timing Requirements for my_block

Example 7-1 Timing Constraints for my_block

create_clock -period 20 -waveform {5 15} clka
create_clock -period 30 -waveform {10 25} clkb
set_input_delay 10.4 -clock clka in1
set_input_delay 6.4 -clock clkb -add_delay in1
set_output_delay 1.6 -clock clka -min out1
set_output_delay 4.8 -clock clka -max out1

Specifying Combinational Path Delay Requirements

For purely combinational delays that are not bounded by a clock
period, use the set_max_delay and set_min_delay commands
to define the maximum and minimum delays for the specified paths.

A common way to produce this type of asynchronous logic in HDL
code is to use asynchronous sets or resets on latches and flip-flops.
Because the reset signal crosses several blocks, constrain this
signal at the top level.

For example, to specify a maximum delay of 5 on the RESET signal,
enter

dc_shell-xg-t> set_max_delay 5 -from RESET

clkb

clka

1 ns

8 ns

4 ns

2 ns

4 ns

clk->Q = 1.4 ns

min = min_path - hold

max = max_path + setup

10.4 ns

6.4 ns

my_block

in1 out1

1.6 ns

4.8 ns

0.4 ns
Thold

0.8 ns
Tsetup

clka
clkb

1.4 ns

clka

clka
1.4 ns
7-16

Chapter 7: Defining Design Constraints

To specify a minimum delay of 10 on the path from IN1 to OUT1,
enter

dc_shell-xg-t> set_min_delay 10 -from IN1 -to OUT1

Use the report_timing_requirements command to list the
minimum delay and maximum delay requirements for your design.

Specifying Timing Exceptions

Timing exceptions define timing relationships that override the
default single-cycle timing relationship for one or more timing paths.
Use timing exceptions to constrain or disable asynchronous paths or
paths that do not follow the default single-cycle behavior.

Note:
Specifying numerous timing exceptions can increase the compile
runtime. Nevertheless, some designs can require many timing
exceptions.

Design Compiler recognizes only timing exceptions that have valid
reference points.

• The valid startpoints in a design are the primary input ports and
the clock pins of sequential cells.

• The valid endpoints are the primary output ports of a design and
the data pins of sequential cells.

Design Compiler does not generate a warning message if you
specify invalid reference points. You must use the -ignored option
of the report_timing_requirements command to find timing
exceptions ignored by Design Compiler.
7-17

Setting Optimization Constraints

You can specify the following conditions by using timing exception
commands:

• False paths (set_false_path)

• Minimum delay requirements (set_min_delay)

• Maximum delay requirements (set_max_delay)

• Multicycle paths (set_multicycle_path)

Use the report_timing_requirements command to list the
timing exceptions in your design.

Specifying False Paths. Design Compiler does not report false
paths in the timing report or consider them during timing
optimization. Use the set_false_path command to specify a false
path. Use this command to ignore paths that are not timing critical,
that can mask other paths that must be considered during
optimization, or that never occur in normal operation.

For example, Figure 7-5 shows a configuration register that can be
written and read from a bidirectional bus (DATA) in a chip.

Figure 7-5 Configuration Register

The circuit has these timing paths:

1. DATA to U1/D

A BD

G

U1

DATA

RD

CONFIG
Phi_1
WR

U2

z

7-18

Chapter 7: Defining Design Constraints

2. RD to DATA

3. U1/G to CONFIG (with possible time borrowing at U1/D)

4. U1/G to DATA (with possible time borrowing at U1/D)

5. U1/G to U1/D (through DATA, with possible time borrowing)

The first four paths are valid paths. The fifth path (U1/G to U1/D) is a
functional false path because normal operation never requires
simultaneous writing and reading of the configuration register. In this
design, you can disable the false path by using this command:

dc_shell-xg-t> set_false_path -from U1/G -to U1/D

To undo a set_false_path command, use the reset_path
command with similar options. For example, enter

dc_shell-xg-t> set_false_path -setup -from IN2 -to FF12/D
dc_shell-xg-t> reset_path -setup -from IN2 -to FF12/D

Creating a false path differs from disabling a timing arc. Disabling a
timing arc represents a break in the path. The disabled timing arc
permanently disables timing through all affected paths. Specifying a
path as false does not break the path; it just prevents the path from
being considered for timing or optimization.

Specifying Minimum and Maximum Delay Requirements. You
can use the set_min_delay and set_max_delay commands,
described earlier in this chapter, to specify path delay requirements
that are more conservative than those derived by Design Compiler
based on the clock timing.

To undo a set_min_delay or set_max_delay command, use the
reset_path command with similar options.
7-19

Setting Optimization Constraints

Register-to-Register Paths. Design Compiler uses the following
equations to derive constraints for minimum and maximum path
delays on register-to-register paths:

min_delay = (Tcapture - Tlaunch) + hold
max_delay = (Tcapture - Tlaunch) - setup

You can override the derived path delay (Tcapture – Tlaunch) by using
the set_min_delay and set_max_delay commands.

For example, assume that you have a path launched from a register
at time 20 that arrives at a register where the next active edge of the
clock occurs at time 35.

dc_shell-xg-t> create_clock -period 40 waveform {0 20} clk1
dc_shell-xg-t> create_clock -period 40 -waveform {15 35} clk2

Design Compiler automatically derives a maximum path delay
constraint of (35 – 20) – (library setup time of register at endpoint).
To specify a maximum path delay of 10, enter

dc_shell-xg-t> set_max_delay 10 -from reg1 -to reg2

Design Compiler calculates the maximum path delay constraint as
10 – (library setup time of register at endpoint), which overrides the
original derived maximum path delay constraint.

Register-to-Port Paths. Design Compiler uses the following
equations to derive constraints for minimum and maximum path
delays on register-to-port paths:

min_delay = period - output_delay
max_delay = period - output_delay
7-20

Chapter 7: Defining Design Constraints

If you use the set_min_delay or set_max_delay commands,
the value specified in these commands replaces the period value in
the constraint calculation. For example, assume you have a design
with a clock period of 20. Output OUTPORTA has an output delay of
5.

dc_shell-xg-t> create_clock -period 20 CLK
dc_shell-xg-t> set_output_delay 5 -clock CLK OUTPORTA

Design Compiler automatically derives a maximum path delay
constraint of 15 (20 – 5). To specify that you want a maximum path
delay of 10, enter

dc_shell-xg-t> set_max_delay 10 -to OUTPORTA

Design Compiler calculates the maximum path delay constraint as
5 (10 – 5), which overrides the original derived maximum path delay
constraint.
7-21

Setting Optimization Constraints

Asynchronous Paths. You can also use the set_max_delay and
set_min_delay commands to constrain asynchronous paths
across different frequency domains. Table 7-3 shows dcsh and dctcl
examples for constraining asynchronous paths.

Setting Multicycle Paths. The multicycle path condition is
appropriate when the path in question is longer than a single cycle
or when data is not expected within a single cycle. Use the
set_multicycle_path command to specify the number of clock
cycles Design Compiler should use to determine when data is
required at a particular endpoint.

You can specify this cycle multiplier for setup or hold checks. If you
do not specify the -setup or -hold option with the
set_multicycle_path command, Design Compiler applies the
multiplier value only to setup checks.

By default, setup is checked at the next active edge of the clock at
the endpoint after the data is launched from the startpoint (default
multiplier of 1). Hold data is launched one clock cycle after the setup
data but checked at the edge used for setup (default multiplier of
zero).

Table 7-3 Examples for Constraining Asynchronous Paths

dcsh Example dctcl Example

dc_shell> set_max_delay 17.1 \
-from find(clock, clk1) \
-to find(clock, clk2)

dc_shell> set_max_delay 23.5 \
-from find(clock, clk2) \
-to find(clock, clk3)

dc_shell> set_max_delay 31.6 \
-from find(clock, clk3) \
-to find(clock, clk1)

dc_shell-xg-t> set_max_delay 17.1 \
-from [get_clocks clk1] \
-to [get_clocks clk2]

dc_shell-xg-t> set_max_delay 23.5 \
-from [get_clocks clk2] \
-to [get_clocks clk3]

dc_shell-xg-t> set_max_delay 31.6 \
-from [get_clocks clk3] \
-to [get_clocks clk1]
7-22

Chapter 7: Defining Design Constraints

Figure 7-6 shows the timing relationship of setup and hold times.

Figure 7-6 Setup and Hold Timing

The timing path starts at the clock pin of FF1 (rising edge of CLKA)
and ends at the data pin of FF2. Assuming that the flip-flops are
rising-edge-triggered, the setup data is launched at time 0 and
checked 20 time units later at the next active edge of CLKB at FF2.
Hold data is launched one (CLKA) clock cycle (time 20) and checked
at the same edge used for setup checking (time 20).

The -setup option of the set_multicycle_path command
moves the edge used for setup checking to before or after the default
edge. For the example shown in Figure 7-6,

• A setup multiplier of zero means that Design Compiler uses the
edge at time zero for checking

• A setup multiplier of 2 means that Design Compiler uses the
edge at time 40 for checking

FF1 FF2
D1

CLKA CLKB

FF1/CLKA

FF2/CLKB

Setup Time Hold Time

0 10 20 30 40
7-23

Setting Optimization Constraints

The -hold option of the set_multicycle_path command
launches the hold data at the edge before or after the default edge,
but Design Compiler still checks the hold data at the edge used for
checking setup. As shown in Figure 7-6 (assuming a default
setup multiplier),

• A hold multiplier of 1 means that the hold data is launched from
CLKA at time 40 and checked at CLKB at time 20

• A hold multiplier of -1 means that the hold data is launched from
CLKA at time 0 and checked at CLKB at time 20

To undo a set_multicycle_path command, use the
reset_path command with similar options.

Using Multiple Timing Exception Commands. A specific timing
exception command refers to a single timing path. A general timing
exception command refers to more than one timing path. If you
execute more than one instance of a given timing exception
command, the more specific commands override the more general
ones.

The following rules define the order of precedence for a given timing
exception command:

• The highest precedence occurs when you define a timing
exception from one pin to another pin.

• A command using only the -from option has a higher priority
than a command using only the -to option.

• For clocks used in timing exception commands, if both -from
and -to are defined, they override commands that share the
same path defined by either the -from or the -to option.
7-24

Chapter 7: Defining Design Constraints

This list details the order of precedence (highest at the top) defined
by these precedence rules:

1. command -from pin -to pin

2. command -from clock -to pin

3. command -from pin -to clock

4. command -from pin

5. command -to pin

6. command -from clock -to clock

7. command -from clock

8. command -to clock

For example, in the following command sequence, paths from A to B
are treated as two-cycle paths because specific commands override
general commands:

dc_shell-xg-t> set_multicycle_path 2 -from A -to B
dc_shell-xg-t> set_multicycle_path 3 -from A

The following rules summarize the interaction of the timing exception
commands:

• General set_false_path commands override specific
set_multicycle_path commands.

• General set_max_delay commands override specific
set_multicycle_path commands.

• Specific set_false_path commands override specific
set_max_delay or set_min_delay commands.
7-25

Setting Optimization Constraints

• Specific set_max_delay commands override specific
set_multicycle_path commands.

Setting Area Constraints

The set_max_area command specifies the maximum area for the
current design by placing a max_area attribute on the current
design. Specify the area in the same units used for area in the
technology library.

For example, to set the maximum area to 100, enter

dc_shell-xg-t> set_max_area 100

Design area consists of the areas of each component and net. The
following components are ignored when Design Compiler calculates
design area:

• Unknown components

• Components with unknown areas

• Technology-independent generic cells

Cell (component) area is technology dependent; Design Compiler
obtains this information from the technology library.

When you specify both timing and area constraints, Design Compiler
attempts to meet timing goals before area goals. To prioritize area
constraints over total negative slack (but not over worst negative
slack), use the -ignore_tns option when you specify the area
constraint.

dc_shell-xg-t> set_max_area -ignore_tns 100
7-26

Chapter 7: Defining Design Constraints

To optimize a small area, regardless of timing, remove all constraints
except for maximum area. You can use the remove_constraint
command to remove constraints from your design. Be aware that this
command removes all optimization constraints from your design.

Verifying the Precompiled Design

Before compiling your design, verify that

• The design is consistent

Use the check_design command to verify design consistency.
For information about the check_design command, see
“Checking for Design Consistency” on page 9-2.

• The attributes and constraints are correct

Design Compiler provides many commands for reporting the
attributes and constraints. For information about these
commands, see “Analyzing Design Problems” on page 9-7 and
“Analyzing Timing Problems” on page 9-8.
7-27

Verifying the Precompiled Design

7-28

Chapter 7: Defining Design Constraints

8
Optimizing the Design 8

Optimization is the Design Compiler synthesis step that maps the
design to an optimal combination of specific target library cells,
based on the design’s functional, speed, and area requirements.
Several of the many factors affecting the optimization outcome are
discussed in this chapter.

This chapter has the following sections:

• The Optimization Process

• Selecting and Using a Compile Strategy

• Resolving Multiple Instances of a Design Reference

• Preserving Subdesigns

• Understanding the Compile Cost Function

• Performing Design Exploration
8-1

• Performing Design Implementation

• Using DC Ultra Datapath Optimization

The Optimization Process

Design Compiler performs the following three levels of optimization:

• Architectural optimization

• Logic-level optimization

• Gate-level optimization

The following sections describe these processes.

Architectural Optimization

Architectural optimization works on the HDL description. It includes
such high-level synthesis tasks as

• Sharing common subexpressions

• Sharing resources

• Selecting DesignWare implementations

• Reordering operators

• Identifying arithmetic expressions for data-path synthesis (DC
Ultra only).

Except for DesignWare implementations, these high-level synthesis
tasks occur only during the optimization of an unmapped design.
DesignWare selection can recur after gate-level mapping.
8-2

Chapter 8: Optimizing the Design

High-level synthesis tasks are based on your constraints and your
HDL coding style. After high-level optimization, circuit function is
represented by GTECH library parts, that is, by a generic,
technology-independent netlist.

For more information about how your coding style affects
architectural optimization, see Chapter 3, “Preparing Design Files for
Synthesis.

Logic-Level Optimization

Logic-level optimization works on the GTECH netlist. It consists of
the following two processes:

• Structuring

This process adds intermediate variables and logic structure to a
design, which can result in reduced design area. Structuring is
constraint based. It is best applied to noncritical timing paths.

During structuring, Design Compiler searches for subfunctions
that can be factored out and evaluates these factors, based on
the size of the factor and the number of times the factor appears
in the design. Design Compiler turns the subfunctions that most
reduce the logic into intermediate variables and factors them out
of the design equations.

By default, Design Compiler structures your design. Use the
set_structure command and the
compile_new_boolean_structure variable to control the
structuring of your design. The set_structure command and
its options set the following attributes: structure,
structure_boolean, and structure_timing.
8-3

The Optimization Process

• Flattening

The goal of this process is to convert combinational logic paths
of the design to a two-level, sum-of-products representation.
Flattening is carried out independently of constraints. It is useful
for speed optimization because it leads to just two levels of
combinational logic.

During flattening, Design Compiler removes all intermediate
variables, and therefore all its associated logic structure, from a
design. Flattening is not always practical, however, because it
requires a large amount of CPU time and can increase area.

By default, Design Compiler does not flatten your design. Use the
set_flatten command to control flattening of your design. The
set_flatten command and its options set the following
attributes: flatten, flatten_effort, flatten_minimize,
and flatten_phase.

Note:

Flattening does not collapse design hierarchy. In Design
Compiler, you remove levels of design hierarchy by using the
ungroup command or the compile command with the
-ungroup_all or -auto_ungroup option.
8-4

Chapter 8: Optimizing the Design

The structuring and flattening attributes enable fine-tuning of the
optimization techniques used for each design in the design
hierarchy. Table 8-1 shows the default values for these attributes.

Use the report_compile_options command to display these
attributes for the current design.

Note:
Do not change these default settings unless you understand
clearly the impact of structuring and flattening on optimization. If
you do choose to change these settings, change them on a
design-by-design basis in the hierarchy; do not set these
attributes globally. If you specify both flattening and structuring,
Design Compiler first performs flattening, then structuring.

Table 8-1 Structuring and Flattening Attributes

Attribute Default setting

structure true

structure_boolean false

structure_timing true

flatten false
8-5

The Optimization Process

Gate-Level Optimization

Gate-level optimization works on the generic netlist created by logic
synthesis to produce a technology-specific netlist. It includes the
following processes:

• Mapping

This process uses gates (combinational and sequential) from the
target technology libraries to generate a gate-level
implementation of the design whose goal is to meet timing and
area goals. You can use the various compile command options
to control the mapping algorithms used by Design Compiler.

• Delay optimization

The process goal is to fix delay violations introduced in the
mapping phase. Delay optimization does not fix design rule
violations or meet area constraints.

• Design rule fixing

The process goal is to correct design rule violations by inserting
buffers or resizing existing cells. Design Compiler tries to fix
these violations without affecting timing and area results, but if
necessary, it does violate the optimization constraints.

• Area optimization

The process goal is to meet area constraints after the mapping,
delay optimization, and design rule fixing phases are completed.
However, Design Compiler does not allow area recovery to
introduce design rule or delay constraint violations as a means of
meeting the area constraints.
8-6

Chapter 8: Optimizing the Design

You can change the priority of the constraints by using the
set_cost_priority command. Also, you can disable design rule
fixing by specifying the -no_design_rule option when you run the
compile command. However, if you use this option, your
synthesized design might violate design rules.

Selecting and Using a Compile Strategy

You can use various strategies to compile your hierarchical design.
The basic strategies are

• Top-down compile, in which the top-level design and all its
subdesigns are compiled together

• Bottom-up compile, in which the individual subdesigns are
compiled separately, starting from the bottom of the hierarchy
and proceeding up through the levels of the hierarchy until the
top-level design is compiled

• Mixed compile, in which the top-down or bottom-up strategy,
whichever is most appropriate, is applied to the individual
subdesigns

In the following sections, the top-down and bottom-up compile
strategies are demonstrated, using the simple design shown in
Figure 8-1.
8-7

Selecting and Using a Compile Strategy

Figure 8-1 Design to Illustrate Compile Strategies

The top-level, or global, specifications for this design, given in
Table 8-2, are defined by the script of Example 8-1 or Example 8-2.
These specifications apply to TOP and all its subdesigns.

Table 8-2 Design Specifications for Design TOP

Specification type Value

Operating condition WCCOM

Wire load model "20x20"

Clock frequency 40 MHz

Input delay time 3 ns

Output delay time 2 ns

Input drive strength drive_of (IV)

Output load 1.5 pF

U1
U2

U3 U4 U5
(A)

(B)

(C) (D) (E)

TOP
8-8

Chapter 8: Optimizing the Design

Example 8-1 dcsh Constraints File for Design TOP (defaults.con)

set_operating_conditions WCCOM
set_wire_load_model "20x20"
create_clock -period 25 clk
set_input_delay 3 -clock clk all_inputs()-find(port, clk)
set_output_delay 2 -clock clk all_outputs()
set_load 1.5 all_outputs()
set_driving_cell -lib_cell IV all_inputs()
set_drive 0 clk

Example 8-2 dctcl Constraints File for Design TOP (defaults.con)

set_operating_conditions WCCOM
set_wire_load_model "20x20"
create_clock -period 25 clk
set_input_delay 3 -clock clk \ [remove_from_collection
[all_inputs] [get_ports clk]]
set_output_delay 2 -clock clk [all_outputs]
set_load 1.5 [all_outputs]
set_driving_cell -lib_cell IV [all_inputs]
set_drive 0 clk

Note:
To prevent buffering of the clock network, the script sets the input
drive resistance of the clock port (clk) to 0 (infinite drive strength).

Top-Down Compile

You can use the top-down compile strategy for designs that are not
memory or CPU limited. Furthermore, top-level designs that are
memory limited can often be compiled using the top-down strategy if
you first replace some of the subdesigns with interface logic model
representations. Replacing a subdesign with an interface logic
model can greatly reduce the memory requirements for the
subdesign instantiation in the top-level design. For information about
how to generate and use interface logic models, see the Interface
Logic Model User Guide.
8-9

Selecting and Using a Compile Strategy

The top-down compile strategy has these advantages:

• Provides a push-button approach

• Takes care of interblock dependencies automatically

On the other hand, the top-down compile strategy requires more
memory and might result in longer runtimes for designs with over
100K gates.

To implement a top-down compile, carry out the following steps:

Note:
If your top-level design contains one or more interface logic
models, use the compile flow described in the Interface Logic
Model User Guide.

1. Read in the entire design.

2. Resolve multiple instances of any design references.

A design that is referenced by more than one instantiated block
or cell must be resolved. Otherwise, Design Compiler cannot
compute which environmental attributes and constraints to apply
to the design during optimization. To learn how to deal with this
problem, see “Resolving Multiple Instances of a Design
Reference” on page 8-20.

3. Apply attributes and constraints to the top level.

Attributes and constraints implement the design specification.
For information about attributes, see “Working With Attributes” on
page 5-62. For information about constraints, see Chapter 6,
“Defining the Design Environment” and Chapter 7, “Defining
Design Constraints.”
8-10

Chapter 8: Optimizing the Design

Note:

You can assign local attributes and constraints to subdesigns,
provided that those attributes and constraints are defined with
respect to the top-level design.

4. Compile the design.

A top-down compile script for the TOP design is shown in
Example 8-3 (dcsh command language) and Example 8-4 (dctcl
command language). Both scripts contain comments that identify
each of the steps. The constraints are applied by including the
constraint file (defaults.con) shown in Example 8-2 on page 8-9.

Example 8-3 Top-Down Compile Script (dcsh)

/* read in the entire design */
read_file -format verilog E.v
read_file -format verilog D.v
read_file -format verilog C.v
read_file -format verilog B.v
read_file -format verilog A.v
read_file -format verilog TOP.v
current_design TOP
link

/* apply constraints and attributes */
include defaults.con

/* compile the design */
compile
8-11

Selecting and Using a Compile Strategy

Example 8-4 Top-Down Compile Script (dctcl)

/* read in the entire design */
read_verilog E.v
read_verilog D.v
read_verilog C.v
read_verilog B.v
read_verilog A.v
read_verilog TOP.v
current_design TOP
link

/* apply constraints and attributes */
source defaults.con

/* compile the design */
compile

Bottom-Up Compile

Use the bottom-up compile strategy for medium-size and large
designs.

Note:
The bottom-up compile strategy is also known as the
compile-characterize-write_script-recompile method.

The bottom-up compile strategy provides these advantages:

• Compiles large designs by using the divide-and-conquer
approach

• Requires less memory than top-down compile

• Allows time budgeting

The bottom-up compile strategy requires

• Iterating until the interfaces are stable
8-12

Chapter 8: Optimizing the Design

• Manual revision control

The bottom-up compile strategy compiles the subdesigns separately
and then incorporates them in the top-level design. The top-level
constraints are applied, and the design is checked for violations.
Although it is possible that no violations are present, this outcome is
unlikely because the interface settings between subdesigns usually
are not sufficiently accurate at the start.

To improve the accuracy of the interblock constraints, you read in the
top-level design and all compiled subdesigns and apply the
characterize command to the individual cell instances of the
subdesigns. Based on the more realistic environment provided by
the compiled subdesigns, characterize captures environment
and timing information for each cell instance and then replaces the
existing attributes and constraints of each cell’s referenced
subdesign with the new values.

Using the improved interblock constraint, you recompile the
characterized subdesigns and again check the top-level design for
constraint violations. You should see improved results, but you might
need to iterate the entire process several times to remove all
significant violations.

The bottom-up compile strategy requires these steps:

1. Develop both a default constraint file and subdesign-specific
constraint files.

The default constraint file includes global constraints, such as the
clock information and the drive and load estimates. The
subdesign-specific constraint files reflect the time budget
allocated to the subblocks.

2. Compile the subdesigns independently.
8-13

Selecting and Using a Compile Strategy

3. Read in the top-level design and any compiled subdesigns not
already in memory.

4. Set the current design to the top-level design, link the design, and
apply the top-level constraints.

If the design meets its constraints, you are finished. Otherwise,
continue with the following steps.

5. Apply the characterize command to the cell instance with the
worst violations.

6. Use write_script to save the characterized information for
the cell.

You use this script to re-create the new attribute values when you
are recompiling the cell’s referenced subdesign.

7. Use remove_design -all to remove all designs from memory.

8. Read in the RTL design of the previously characterized cell.

Recompiling the RTL design instead of the cell’s mapped design
usually leads to better optimization.

9. Set current_design to the characterized cell’s subdesign and
recompile, using the saved script of characterization data.

10. Read in all other compiled subdesigns.

11. Link the current subdesign.

12. Choose another subdesign, and repeat steps 3 through 9 until
you have recompiled all subdesigns, using their actual
environments.
8-14

Chapter 8: Optimizing the Design

When applying the bottom-up compile strategy, consider the
following:

• The read_file command runs most quickly with the .ddc
format (or the .db format in DB mode). If you will not be modifying
your RTL code after the first time you read (or elaborate) it, save
the unmapped design to a .ddc (or .db) file. This will save time
when you reread the design.

• The compile command affects all subdesigns of the current
design. If you want to optimize only the current design, you can
remove or not include its subdesigns in your database, or you can
place the dont_touch attribute on the subdesigns (by using the
set_dont_touch command).

• In XG mode, the subdesign constraints are not preserved after
you perform a top-level compile. To ensure that you are using the
correct constraints, always reapply the subdesign constraints
before compiling or analyzing a subdesign.

A bottom-up compile script for the TOP design is shown in
Example 8-5 on page 8-16 (dcsh) and Example 8-6 on page 8-18
(dctcl). Both scripts contain comments that identify each of the steps
in the bottom-up compile strategy. In these scripts it is assumed that
block constraint files exist for each of the subblocks (subdesigns) in
design TOP. The compile scripts also use the default constraint file
(defaults.con) shown in Example 8-2 on page 8-9.

Note:
This script shows only one pass through the bottom-up compile
procedure. If the design requires further compilations, you repeat
the procedure from the point where the top-level design, TOP.v,
is read in.
8-15

Selecting and Using a Compile Strategy

Example 8-5 Bottom-Up Compile Script (dcsh)

all_blocks = {E,D,C,B,A}

/* compile each subblock independently */
foreach (block, all_blocks) {
 /* read in block */
 block_source = block + ".v"
 read_file -format verilog block_source
 current_design block
 link
 /* apply global attributes and constraints */
 include defaults.con
 /* apply block attributes and constraints */
 block_script = block + ".con"
 include block_script
 /* compile the block */
 compile
}

/* read in entire compiled design */
read_file -format verilog TOP.v
current_design TOP
link
write -hierarchy -output first_pass.db

/* apply top-level constraints */
include defaults.con
include top_level.con

/* check for violations */
report_constraint

/* characterize all instances in the design */
all_instances = {U1,U2,U2/U3,U2/U4,U2/U5}
characterize -constraint all_instances

/* save characterize information */
foreach (block, all_blocks) {
 current_design block
 char_block_script = block + ".wscr"
 write_script > char_block_script
}

/* recompile each block */
8-16

Chapter 8: Optimizing the Design

foreach (block, all_blocks) {

 /* clear memory */
 remove_design -all

 /* read in previously characterized subblock */
 block_source = block + ".v"
 read_file -format verilog block_source

 /* recompile subblock */
 current_design block
 link
 /* apply global attributes and constraints */
 include defaults.con
 /* apply characterization constraints */
 char_block_script = block + ".wscr"
 include char_block_script
 /* apply block attributes and constraints */
 block_script = block + ".con"
 include block_script
 /* recompile the block */
 compile
}

8-17

Selecting and Using a Compile Strategy

Example 8-6 Bottom-Up Compile Script (dctcl)

set all_blocks {E D C B A}

compile each subblock independently
foreach block $all_blocks {

read in block
 set block_source "$block.v"
 read_file -format verilog $block_source
 current_design $block
 link

apply global attributes and constraints
 source defaults.con
 # apply block attributes and constraints
 set block_script "$block.con"
 source $block_script

compile the block
 compile
}

read in entire compiled design
read_file -format verilog TOP.v
current_design TOP
link
write -hierarchy -format ddc -output first_pass.ddc

apply top-level constraints
source defaults.con
source top_level.con

check for violations
report_constraint

characterize all instances in the design
set all_instances {U1 U2 U2/U3 U2/U4 U2/U5}
characterize -constraint $all_instances

save characterize information
foreach block $all_blocks {
 current_design $block
 set char_block_script "$block.wscr"
 write_script > $char_block_script
}

recompile each block
8-18

Chapter 8: Optimizing the Design

foreach block $all_blocks {

clear memory
 remove_design -all

read in previously characterized subblock
 set block_source "$block.v"
 read_file -format verilog $block_source

recompile subblock
 current_design $block
 link

apply global attributes and constraints
 source defaults.con

apply characterization constraints
 set char_block_script "$block.wscr"
 source $char_block_script

apply block attributes and constraints
 set block_script "$block.con"
 source $block_script

recompile the block
 compile
}

Note:
When performing a bottom-up compile, if the top-level design
contains glue logic as well as the subblocks (subdesigns), you
must also compile the top-level design. In this case, to prevent
Design Compiler from recompiling the subblocks, you first apply
the set_dont_touch command to each subdesign.

Mixed Compile Strategy

You can take advantage of the benefits of both the top-down and the
bottom-up compile strategies by using both.

• Use the top-down compile strategy for small hierarchies of
blocks.
8-19

Selecting and Using a Compile Strategy

• Use the bottom-up compile strategy to tie small hierarchies
together into larger blocks.

Figure 8-2 shows an example of the mixed compilation strategy.

Figure 8-2 Mixing Compilation Strategies

Resolving Multiple Instances of a Design Reference

In a hierarchical design, subdesigns are often referenced by more
than one cell instance, that is, multiple references of the design can
occur. For example, Figure 8-3 shows the design TOP, in which
design C is referenced twice (U2/U3 and U2/U4).

TOP

A B C D

Specification has detailed time budgets
for first level of hierarchy: A, B, C, and D.

Top-down compile is used for
hierarchy below D.

Bottom-up compile is used
for hierarchy below B.
8-20

Chapter 8: Optimizing the Design

Figure 8-3 Multiple Instances of a Design Reference

The following methods are available for handling designs with
multiple instances:

• The uniquify method

In earlier releases, you had manually to run the uniquify
command to create a uniquely named copy of the design for each
instance. However, beginning with version V-2004.06, the tool
automatically uniquifies designs as part of the compile process.

Note that you can still manually force the tool to uniquify designs
before compile by running the uniquify command, but this step
contributes to longer runtimes because the tool automatically
“re-uniquifies” the designs when you run the compile
command. You cannot turn off the uniquify process.

U1 U2

U3 U4 U5
(A)

(B)

(C) (C) (D)

TOP

DCA

Top-level design
 with instances

Design Compiler memory:
 loaded designs
8-21

Resolving Multiple Instances of a Design Reference

• The compile-once-don’t-touch method

This method uses the set_dont_touch command to preserve
the compiled subdesign while the remaining designs are
compiled.

• The ungroup method

This method uses the ungroup command to remove the
hierarchy.

 These methods are described in the following sections.

Uniquify Method

The uniquify process copies and renames any multiply referenced
design so that each instance references a unique design. The
process removes the original design from memory after it creates the
new, unique designs. The original design and any collections that
contain it or its objects are no longer accessible.

Note:
In DB mode, the original design remains in memory after you run
the uniquify command.

You can invoke this process manually by running the uniquify
command or automatically when you run the compile command.
The uniquification process can resolve multiple references
throughout the hierarchy the current design (except those having a
dont_touch attribute). After this process finishes, the tool can
optimize each design copy based on the unique environment of its
cell instance.
8-22

Chapter 8: Optimizing the Design

You can also create unique copies for specific references by using
the -reference option, or you can specify specific cells by using
the -cell option. Design Compiler makes unique copies for cells
specified with the -reference or the -cells option, even if they
have a dont_touch attribute.

The uniquify command accepts instance objects—that is, cells at
a lower level of hierarchy. When you use the -cell option with an
instance object, the complete path to the instance is uniquified. For
example, the following command uniquifies both instances mid1 and
mid1/bot1 (assuming that mid1 is not unique):

dc_shell-xg-t> uniquify -cell mid1/bot1

Note:
In DB mode, the uniquify command does not accept instance
objects. When you use the -cell option, the cells that you
specify must be in the current design.

Design Compiler uses the naming convention specified in the
uniquify_naming_style variable to generate the name for each
copy of the subdesign. The default naming convention is

%s_%d

%s

The original name of the subdesign (or the name specified in the
-base_name option).

%d

The smallest integer value that forms a unique subdesign name.

You can use the uniquify command simply to resolve multiple
design references, or you can recompile the current design after the
multiple references to the subdesigns are resolved.
8-23

Resolving Multiple Instances of a Design Reference

Note:
Without recompiling the design, you can use the uniquify
command together with the uniquify_naming_style
variable simply to resolve multiple design references in a netlist.

The following command sequence resolves the multiple instances of
design C in design TOP shown in Figure 8-3 on page 8-21; it uses
the automatic uniquify method to create new designs C_0 and C_1
by copying design C and then replaces design C with the two copies
in memory.

dc_shell-xg-t> current_design top
dc_shell-xg-t> compile

Figure 8-4 shows the result of running this command sequence.

Figure 8-4 Uniquify Results

U1 U2

U3 U4 U5
(A)

(B)

(C_0) (C_1) (D)

TOP

DC_0A C_1

Top-level Design
 With Instances

Design Compiler Memory:
 Loaded Designs
8-24

Chapter 8: Optimizing the Design

Compared with the compile-once-don’t-touch method, the uniquify
method has the following characteristics:

• Requires more memory

• Takes longer to compile

Compile-Once-Don’t-Touch Method

If the environments around the instances of a multiply referenced
design are sufficiently similar, use the compile-once-don’t-touch
method. In this method, you compile the design, using the
environment of one of its instances, and then you use the
set_dont_touch command to preserve the subdesign during the
remaining optimization. For details about the set_dont_touch
command, see “Preserving Subdesigns” on page 8-28.

To use the compile-once-don’t-touch method to resolve multiple
instances, follow these steps:

1. Characterize the subdesign’s instance that has the worst-case
environment.

2. Compile the referenced subdesign.

3. Use the set_dont_touch command to set the dont_touch
attribute on all instances that reference the compiled subdesign.

4. Compile the entire design.

For example, the following command sequence resolves the multiple
instances of design C in design TOP by using the
compile-once-don’t-touch method (assuming U2/U3 has the
worst-case environment). In this case, no copies of the original
subdesign are loaded into memory.
8-25

Resolving Multiple Instances of a Design Reference

dc_shell-xg-t> current_design top
dc_shell-xg-t> characterize U2/U3
dc_shell-xg-t> current_design C
dc_shell-xg-t> compile
dc_shell-xg-t> current_design top
dc_shell-xg-t> set_dont_touch {U2/U3 U2/U4}
dc_shell-xg-t> compile

Figure 8-5 shows the result of running this command sequence. The
X drawn over the C design, which has already been compiled,
indicates that the dont_touch attribute has been set. This design
is not modified when the top-level design is compiled.

Figure 8-5 Compile-Once-Don’t-Touch Results

The compile-once-don’t-touch method has the following advantages:

• Compiles the reference design once

• Requires less memory than the uniquify method

• Takes less time to compile than the uniquify method

U1 U2

U3 U4 U5
(A)

(B)

(C) (C) (D)

TOP

DCA

Top-level Design
 With Instances

Design Compiler Memory:
 Loaded Designs
8-26

Chapter 8: Optimizing the Design

The principal disadvantage of the compile-once-don’t-touch method
is that the characterization might not apply well to all instances.
Another disadvantage is that you cannot ungroup objects that have
the dont_touch attribute.

Ungroup Method

The ungroup method has the same effect as the uniquify method (it
makes unique copies of the design), but in addition, it removes levels
of hierarchy. This method uses the ungroup command to produce a
flattened netlist. For details about the ungroup command, See
“Removing Levels of Hierarchy” on page 5-35.

After ungrouping the instances of a subdesign, you can recompile
the top-level design. For example, the following command sequence
uses the ungroup method to resolve the multiple instances of design
C in design TOP:

dc_shell-xg-t> current_design B
dc_shell-xg-t> ungroup {U3 U4}
dc_shell-xg-t> current_design top
dc_shell-xg-t> compile

Figure 8-6 shows the result of running this command sequence.
8-27

Resolving Multiple Instances of a Design Reference

Figure 8-6 Ungroup Results

The ungroup method has the following characteristics:

• Requires more memory and takes longer to compile than the
compile-once-don’t-touch method

• Provides the best synthesis results

The obvious drawback in using the ungroup method is that it
removes the user-defined design hierarchy.

Preserving Subdesigns

The set_dont_touch command preserves a subdesign during
optimization. It places the dont_touch attribute on cells, nets,
references, and designs in the current design to prevent these
objects from being modified or replaced during optimization.

TOP

U1 U2

U5

(A)
(B)

(D)

U3/U10

U3/U11

U4/U10

U4/U11

D
Design Compiler memory
8-28

Chapter 8: Optimizing the Design

Note:
Any interface logic model present in your design is automatically
marked as dont_touch. Also, the cells of an interface logic
model are marked as dont_touch. For information about
interface logic models, see the Interface Logic Model User Guide.

Use the set_dont_touch command on subdesigns you do not
want optimized with the rest of the design hierarchy. The
dont_touch attribute does not prevent or disable timing through the
design.

When you use set_dont_touch, remember the following points:

• Setting dont_touch on a hierarchical cell sets an implicit
dont_touch on all cells below that cell.

• Setting dont_touch on a library cell sets an implicit
dont_touch on all instances of that cell.

• Setting dont_touch on a net sets an implicit dont_touch only
on mapped combinational cells connected to that net. If the net
is connected only to generic logic, optimization might remove the
net.

• Setting dont_touch on a reference sets an implicit
dont_touch on all cells using that reference during subsequent
optimizations of the design.

• Setting dont_touch on a design has an effect only when the
design is instantiated within another design as a level of
hierarchy. In this case, the dont_touch attribute on the design
implies that all cells under that level of hierarchy are subject to the
dont_touch attribute. Setting dont_touch on the top-level
design has no effect because the top-level design is not
instantiated within any other design.
8-29

Preserving Subdesigns

• You cannot manually or automatically ungroup objects marked as
dont_touch. That is, the ungroup command and the compile
-ungroup_all and -auto_ungroup options have no effect on
dont_touch objects.

Note:

The dont_touch attribute is ignored on synthetic part cells
(for example, many of the cells read in from an HDL
description) and on nets that have unmapped cells on them.
During compilation, warnings appear for dont_touch nets
connected to unmapped cells (generic logic).

Use the report_design command to determine whether a design
has the dont_touch attribute set.

dc_shell-xg-t> set_dont_touch SUB_A
Performing set_dont_touch on design ’SUB_A’.1
dc_shell-xg-t> report_design

**
Report : design
Design : SUB_A
Version: 1999.05
Date : Mon Jan 4 10:56:49 1999
**

Design is dont_touched.

To remove the dont_touch attribute, use the remove_attribute
command or the set_dont_touch command set to false.
8-30

Chapter 8: Optimizing the Design

Understanding the Compile Cost Function

The compile cost function consists of design rule costs and
optimization costs. By default, Design Compiler prioritizes costs in
the following order:

1. Design rule costs

a. Connection class

b. Multiple port nets

c. Maximum transition time

d. Maximum fanout

e. Maximum capacitance

f. Cell degradation

2. Optimization costs

a. Maximum delay

b. Minimum delay

c. Maximum power

d. Maximum area

e. Minimum porosity

The compile cost function considers only those components that are
active in your design. Design Compiler evaluates each cost function
component independently, in order of importance.

When evaluating cost function components, Design Compiler
considers only violators (positive difference between actual value
and constraint) and works to reduce the cost function to zero.
8-31

Understanding the Compile Cost Function

The goal of Design Compiler is to meet all constraints. However, by
default, it gives precedence to design rule constraints because
design rule constraints are functional requirements for designs.
Using the default priority, Design Compiler fixes design rule
violations even at the expense of violating your delay or area
constraints.

You can change the priority of the maximum design rule costs and
the delay costs by using the set_cost_priority command to
specify the ordering. You must run the set_cost_priority
command before running the compile command.

You can disable evaluation of the design rule cost function by using
the -no_design_rule option when running the compile
command.

You can disable evaluation of the optimization cost function by using
the -only_design_rule option when running the compile
command.

Calculating Transition Time Cost

Design Compiler determines driver transition times from the
technology library. If the transition time for a given driver is greater
that the max_transition value, Design Compiler reports a design
rule violation and works to correct the violation.

Calculating Fanout Cost

Design Compiler computes fanout load for a driver by using the
following equation:
8-32

Chapter 8: Optimizing the Design

m is the number of inputs driven by the driver.

fanout_loadi is the fanout load of the i th input.

If the calculated fanout load is greater than the max_fanout value,
Design Compiler reports a design rule violation and attempts to
correct the violation.

Calculating Capacitance Cost

Design Compiler computes the total capacitance for a driver by using
the following equation:

m is the number of inputs driven by the driver.

Ci is the capacitance of the i th input.

If the calculated capacitance is greater than the max_capacitance
value, Design Compiler reports a design rule violation and attempts
to correct the violation.

fanout_loadi
i 1=

m

∑

Ci
i 1=

m

∑

8-33

Understanding the Compile Cost Function

Calculating Cell Degradation Cost

The cell degradation tables in the technology library provide a
secondary maximum capacitance constraint, based on the transition
times at the cell inputs. Design Compiler evaluates this cost only if
you set the compile_fix_cell_degradation variable to true.

If the compile_fix_cell_degradation variable is true and the
calculated capacitance is greater than the cell_degradation
value, Design Compiler reports a design rule violation and attempts
to correct the violation. The maximum capacitance cost has a higher
priority than the cell degradation cost. Therefore, Design Compiler
fixes cell degradation violations only if it can do so without violating
the maximum capacitance constraint.

Calculating Maximum Delay Cost

Design Compiler supports two methods for calculating the maximum
delay cost:

• Worst negative slack (default behavior)

• Critical range negative slack

The following sections describe these methods.

Worst Negative Slack Method

By default, Design Compiler uses the worst negative slack method to
calculate the maximum delay cost. With the worst negative slack
method, only the worst violator in each path group is considered.
8-34

Chapter 8: Optimizing the Design

A path group is a collection of paths that to Design Compiler
represent a group in maximum delay cost calculations. Each time
you create a clock with the create_clock command, Design
Compiler creates a path group that contains all the paths associated
with the clock. You can also create path groups by using the
group_path command (see “Creating Path Groups” on page 8-47
for information about the group_path command). Design Compiler
places in the default group any paths that are not associated with any
particular group or clock. To see the path groups defined for your
design, run the report_path_group command.

Because the worst negative slack method does not optimize
near-critical paths, this method requires fewer CPU resources than
the critical negative slack method. Because of the shorter runtimes,
the worst negative slack method is ideal for the exploration phase of
the design. Always use the worst negative slack method during
default compile runs.

With the worst negative slack method, the equation for the maximum
delay cost is

m is the number of path groups.

vi is the worst violator in the i th path group.

wi is the weight assigned to the i th path group.

Design Compiler calculates the maximum delay violation for each
path group as

max (0, (actual_path_delay - max_delay))

vi wi×
i 1=

m

∑

8-35

Understanding the Compile Cost Function

Because only the worst violator in each path group contributes to the
maximum delay violation, how you group paths affects the maximum
delay cost calculation.

• If only one path group exists, the maximum delay cost is the
amount of the worst violation multiplied by the group weight.

• When multiple path groups exist, the costs for all the groups are
added to determine the maximum delay cost of the design.

During optimization, the Design Compiler focus is on reducing the
delay of the most critical path. This path changes during
optimization. If Design Compiler minimizes the initial path’s delay so
that it is no longer the worst violator, the tool shifts its focus to the
path that is now the most critical path in the group.

Critical Range Negative Slack Method

Design Compiler also supports the critical range negative slack
method to calculate the maximum delay cost. The critical range
negative slack method considers all violators in each path group that
are within a specified delay margin (referred to as the critical range)
of the worst violator.

For example, if the critical range is 2.0 ns and the worst violator has
a delay of 10.0 ns, Design Compiler optimizes all paths that have a
delay between 8.0 and 10.0 ns.

The critical range negative slack is the sum of all negative slack
values within the critical range for each path group. When the critical
range is large enough to include all violators, the critical negative
slack is equal to the total negative slack.

For information about specifying the critical range, see “Creating
Path Groups” on page 8-47.
8-36

Chapter 8: Optimizing the Design

Using the critical negative slack method, the equation for the
maximum delay cost is

m is the number of path groups.

n is the number of paths in the critical range in the path group.

vij is a violator within the critical range of the i th path group.

wi is the weight assigned to the i th path group.

Design Compiler calculates the maximum delay violation for each
path within the critical range as

max (0, (actual_path_delay - max_delay))

Calculating Minimum Delay Cost

The equation for the minimum delay cost is

m is the number of paths affected by set_min_delay or
set_fix_hold.

vi is the i th minimum delay violation.

vij
j 1=

n

∑〈 〉 wi×
⎝ ⎠
⎜ ⎟
⎛ ⎞

i 1=

m

∑

vi
i 1=

m

∑

8-37

Understanding the Compile Cost Function

Design Compiler calculates the minimum delay violation for each
path as

max (0, (min_delay - actual_path_delay))

The minimum delay cost for a design differs from the maximum delay
cost. Path groups do not affect the minimum delay cost. In addition,
all violators, not just the most critical path, contribute to the minimum
delay cost.

Calculating Maximum Power Cost

Design Compiler computes the maximum power cost only if you have
a Power-Optimization license and your technology library is
characterized for power.

The maximum power cost has two components:

• Maximum dynamic power

Design Compiler calculates the maximum dynamic power cost as

max (0, actual_power - max_dynamic_power)

• Maximum leakage power

Design Compiler calculates the maximum leakage power cost as

max (0, actual_power - max_leakage_power)

For more information about the maximum power cost, see the Power
Compiler Reference Manual.
8-38

Chapter 8: Optimizing the Design

Calculating Maximum Area Cost

Design Compiler computes the area of a design by summing the
areas of each of its components (cells) on the design hierarchy’s
lowest level (and the area of the nets). Design Compiler ignores the
following components when calculating circuit area:

• Unknown components

• Components with unknown areas

• Technology-independent generic cells

The cell and net areas are technology dependent. Design Compiler
obtains this information from the technology library.

Design Compiler calculates the maximum area cost as

max (0, actual_area - max_area)

Calculating Minimum Porosity Cost

Design Compiler computes the porosity of a design by dividing the
sum of the routing track area of each of its components on the design
hierarchy’s lowest level by the sum of all component areas. Design
Compiler ignores the following components when calculating
porosity:

• Unknown components

• Components with unknown routing track areas

• Technology-independent generic cells
8-39

Understanding the Compile Cost Function

The routing track area of a cell and the cell area are technology
dependent. Design Compiler obtains this information from the
technology library.

Design Compiler calculates the minimum porosity cost as

max (0, min_porosity - actual_porosity)

Performing Design Exploration

In Design exploration, you use the default synthesis algorithm to
gauge the design performance against your goals. To invoke the
default synthesis algorithm, use the compile command with
no options:

dc_shell-xg-t> compile

The default compile uses the -map_effort medium option of the
compile command and the default settings of the structuring and
flattening attributes. The default area effort of the area recovery
phase of the compile is the specified value of the map_effort
option. You can change the area effort by using the -area_effort
option.

If the performance violates the timing goals by more than 15 percent,
you should consider whether to refine the design budget or modify
the HDL code.
8-40

Chapter 8: Optimizing the Design

Performing Design Implementation

The default compile generates good results for most designs. If your
design meets the optimization goals after design exploration, you are
finished. If not, try the techniques described in the following sections:

• Optimizing Random Logic

• Optimizing Structured Logic

• Optimizing Structured Logic

• Optimizing for Maximum Performance

• Optimizing for Minimum Area

• Optimizing Data Paths

Optimizing Random Logic

If the default compile does not give the desired result for your random
logic design, try the following techniques. If the first technique does
not give the desired results, use the second technique, and so on,
until you obtain the desired results.

• Flatten the design before structuring. Enter

dc_shell-xg-t> set_flatten true
dc_shell-xg-t> set_structure true
dc_shell-xg-t> compile

When you run this command sequence, Design Compiler first
flattens the logic, then goes back and restructures the design by
sharing logic off the critical path.
8-41

Performing Design Implementation

• Increase the flattening effort. Enter

dc_shell-xg-t> set_flatten true -effort medium
dc_shell-xg-t> compile

• Fine-tune the results with minimization or phase inversion. Enter

dc_shell-xg-t> set_flatten true \
-minimize multiple_output -phase true

dc_shell-xg-t> compile

The set_flatten -minimize command causes Design
Compiler to share product terms between output logic cones
(minimization). Minimization causes higher fanout but does not
change the two-level sum-of-products representation.

If you select the -minimize single_output option, Design
Compiler minimizes the equations for each output individually.
The -minimize multiple_output option enables
minimization of the entire design by allowing optimization to
share terms among outputs. Minimization increases compile
time; therefore, Design Compiler does not perform minimization
during default flattening.

The set_flatten -phase true command inverts the polarity
of the outputs, compares the original implementation with the
complement, and keeps the best result. Setting the -phase
option to true increases compile time; therefore, the default value
for the -phase option is false.
8-42

Chapter 8: Optimizing the Design

Optimizing Structured Logic

If the default compile does not give the desired result for your
structured logic design, try the following techniques. If the first
technique does not give the desired results, try the second one.

• Map the design with no flattening or structuring. Enter

dc_shell-xg-t> set_structure false
dc_shell-xg-t> compile

• Flatten with structuring. Enter

dc_shell-xg-t> set_flatten true
dc_shell-xg-t> set_structure true
dc_shell-xg-t> compile

When you run this command sequence, Design Compiler first
flattens the logic, then goes back and restructures the design by
sharing logic off the critical path.

Optimizing High-Performance Designs

For high-performance designs that have significantly tight timing
constraints, you can invoke a single DC Ultra command,
compile_ultra, for better quality of results (QoR). This command
allows you to apply the best possible set of timing-centric variables
or commands during compile for critical delay optimization as well as
improvement in area QoR. Because compile_ultra includes all
compile options and starts the entire compile process, no separate
compile command is necessary.

Note:
Compile options, such as -map_effort,
-incremental_mapping, and -area_effort, are not
compatible with the compile_ultra command.
8-43

Performing Design Implementation

The command syntax is

int compile_ultra [-scan] [-no_uniquify]
[-no_boundary_optimization] [-no_autoungroup]

• -scan

Enables test-ready compile. Use this option to replace all
sequential elements during optimization.

• -no_uniquify

Allows you to specify that the uniquify process is not to be
performed during compile. Use this option when you want to
carry out a first-pass, bottom-up, high-effort compile.

• -no_boundary_optimization

Allows you to specify that no hierarchical boundary optimization
is performed on the current design.

By default, if this option is not specified, the tool performs
hierarchical boundary optimization, which can change design
function such that the design operates properly only in its current
environment. If this behavior is undesirable, use the option to
disable boundary optimization.

• -no_autoungroup

Allows you to disable automatic ungrouping during compile.

By default, the compile_ultra command performs automatic
ungrouping of hierarchies—both area-based auto-ungrouping
and delay-based auto-ungrouping. For more information, see
“Automatic Ungrouping Using the compile_ultra command” on
page 8-45.
8-44

Chapter 8: Optimizing the Design

By default, if the dw_foundation.sldb library is not in the synthetic
library list but the DesignWare license has been successfully
checked out, the dw_foundation.sldb library is automatically added
to the synthetic library list. This behavior applies to the current
command only. The user-specified synthetic library and link library
lists are not affected.

In addition, all DesignWare hierarchies are, by default,
unconditionally ungrouped in the second pass of the compile. You
can prevent this ungrouping by setting the
compile_ultra_ungroup_dw variable to false (the default is
true).

To use the compile_ultra command, you will need a DC Ultra
license and a DesignWare Foundation license.

For more information on this command, see the man page.

Automatic Ungrouping Using the compile_ultra
command

By default, the compile_ultra command performs automatic
ungrouping of hierarchies—both area-based auto-ungrouping and
delay-based auto-ungrouping.

• The command performs area-based auto-ungrouping before
initial mapping. The tool estimates the area for unmapped
hierarchies and removes small subdesigns; the goal is to improve
area and timing quality of results. Because the tool performs
auto-ungrouping at an early stage, it has a better optimization
context. Additionally, datapath extraction is enabled across
ungrouped hierarchies. These factors improve the timing and
area quality of results.
8-45

Performing Design Implementation

• The command also performs delay-based auto-ungrouping.
Delay-based auto-ungrouping ungroups hierarchies along the
critical path and is used essentially for timing optimization.

Use the compile_auto_ungroup_delay_num_cells
variable to specify a threshold below which a hierarchy is not
ungrouped. The default is 500. This threshold value of a
hierarchy refers to the number of child cells in that hierarchy (that
is, the cells are not counted recursively). To include leaf cells of
the design hierarchy, set the
compile_auto_ungroup_count_leaf_cells variable to
true.

Note:
In DB mode, the compile_ultra command does only
delay-based auto-ungrouping; it does not perform early area-
based auto-ungrouping.

Hierarchies are not automatically ungrouped in the following cases:

• The wire load model for the hierarchy is different from the wire
load model of the parent hierarchy.

You can override this behavior by setting the
compile_auto_ungroup_override_wlm variable to true
(the default is false). The ungrouped child cells of the hierarchy
then inherit the wire load model of the parent hierarchy.
Consequently, the child cells might have a more pessimistic wire
load model. To ensure that the cells that are ungrouped into
different wire load models are updated with the correct delays,
set the auto_ungroup_preserve_constraints variable to
true (in addition to setting the
compile_auto_ungroup_override_wlm variable to true)

• Constraints or timing exceptions are set on pins of the hierarchy.
8-46

Chapter 8: Optimizing the Design

You can override this behavior by setting the
auto_ungroup_preserve_constraints variable to true.
Design Compiler ungroups the hierarchy and moves timing
constraints to adjacent, persistent pins, that is, pins on the same
net that remain after ungrouping.

For more information on preserving timing constraints, see
“Preserving Hierarchical Pin Timing Constraints During
Ungrouping” on page 5-44.

• The hierarchy has user-specified constraints such as
dont_touch , size_only, or set_ungroup attributes.

Optimizing for Maximum Performance

If your design does not meet the timing constraints, you can try the
following methods to improve performance:

• Create path groups

• Fix heavily loaded nets

• Flatten logic on the critical path

• Auto-ungroup hierarchies on the critical path

• Perform a high-effort incremental compile

• Perform a high-effort compile

Creating Path Groups

By default, Design Compiler groups paths based on the clock
controlling the endpoint (all paths not associated with a clock are in
the default path group). If your design has complex clocking,
8-47

Performing Design Implementation

complex timing requirements, or complex constraints, you can create
path groups to focus Design Compiler on specific critical paths in
your design.

Use the group_path command to create path groups. The
group_path command allows you to

• Control the optimization of your design

• Optimize near-critical paths

• Optimize all paths

Controlling the Optimization of Your Design. You can control the
optimization of your design by creating and prioritizing path groups,
which affect only the maximum delay cost function. By default,
Design Compiler works only on the worst violator in each group.

Set the path group priorities by assigning weights to each group (the
default weight is 1.0). The weight can be from 0.0 to 100.0.

For example, Figure 8-7 shows a design that has multiple paths to
flip-flop FF1.

Figure 8-7 Path Group Example

To indicate that the path from input in3 to FF1 is the highest-priority
path, use the following command to create a high-priority path group:

dc_shell-xg-t> group_path -name group3 \
-from in3 -to FF1/D -weight 2.5

in3

in4
FF1
8-48

Chapter 8: Optimizing the Design

Optimizing Near-Critical Paths. When you add a critical range to a
path group, you change the maximum delay cost function from worst
negative slack to critical negative slack. Design Compiler optimizes
all paths within the critical range.

Specifying a critical range can increase runtime. To limit the runtime
increase, use critical range only during the final implementation
phase of the design, and use a reasonable critical range value. A
guideline for the maximum critical range value is 10 percent of the
clock period.

Use one of the following methods to specify the critical range:

• Use the -critical_range option of the group_path
command.

• Use the set_critical_range command.

For example, Figure 8-8 shows a design with three outputs, A, B,
and C.

Figure 8-8 Critical Range Example

Assume that the clock period is 20 ns, the maximum delay on each
of these outputs is 10 ns, and the path delays are as shown. By
default, Design Compiler optimizes only the worst violator (the path

in1

in2

A
B
C

13 ns
12 ns
11 ns

10 ns

delay

Worst violator
A
B
C

Path

Goal
8-49

Performing Design Implementation

to output A). To optimize all paths, set the critical delay to 3.0
ns.Table 8-3 shows the dcsh and dctcl command sequences for this
example.

Optimizing All Paths. You can optimize all paths by creating a path
group for each endpoint in the design. Creating a path group for each
endpoint enables total negative slack optimization but results in long
compile runtimes.

Table 8-4 shows dcsh and dctcl scripts that you can use to create a
path group for each endpoint.

Table 8-3 Critical Range Examples

dcsh Example dctcl Example

create_clock -period 20 clk
set_critical_range 3.0 \

current_design
set_max_delay 10 {A B C}
group_path -name group1 -to {A B C}

create_clock -period 20 clk
set_critical_range 3.0 \

$current_design
set_max_delay 10 {A B C}
group_path -name group1 -to {A B C}

Table 8-4 Scripts to Create a Path Group for Each Endpoint

dcsh Script dctcl Script

endpoints = \
all_outputs() + \
all_registers(-data_pins)

foreach (endpt, endpoints) {
group_path -name endpt -to endpt

}

set endpoints [add_to_collection \
[all_outputs] \
[all_registers -data_pins]]

foreach_in_collection endpt $endpoints {
set pin [get_object_name $endpt]
group_path -name $pin -to $pin

}

8-50

Chapter 8: Optimizing the Design

Fixing Heavily Loaded Nets

Heavily loaded nets often become critical paths. To reduce the load
on a net, you can use either of two approaches:

• If the large load resides in a single module and the module
contains no hierarchy, fix the heavily loaded net by using the
balance_buffer command. Table 8-5 shows dcsh and dctcl
scripts that use the balance_buffer command to fix heavily
loaded nets.

Note:

The balance_buffer command provides the best results
when your library uses linear delay models. If your library uses
nonlinear delay models, the second approach provides better
results.

• If the large loads reside across the hierarchy from several
modules, apply design rules to fix the problem. Table 8-6 shows
dcsh and dctcl scripts that use design rules to fix heavily loaded
nets.

Table 8-5 Using balance_buffer to Fix Heavily Loaded Nets

dcsh Script dctcl Script

include constraints.con
compile
balance_buffer \

-from find(pin, buf1/Z)

source constraints.con
compile
balance_buffer \

-from [get_pins buf1/Z]

Table 8-6 Using Design Rules to Fix Heavily Loaded Nets

dcsh Script dctcl Script

include constraints.con
compile
set_max_capacitance 3.0
compile -only_design_rule

source constraints.con
compile
set_max_capacitance 3.0
compile -only_design_rule
8-51

Performing Design Implementation

In rare cases, hierarchical structure might disable Design Compiler
from fixing design rules.

In the sample design shown in Figure 8-9, net O1 is overloaded. To
reduce the load, group as many of the loads (I1 through In) as
possible in one level of hierarchy by using the group command or by
changing the HDL. Then you can apply one of the approaches.

Figure 8-9 Heavily Loaded Net

Flattening Logic on the Critical Path

Flattening improves performance by representing the design as a
two-level sum of products. However, flattening requires considerable
CPU resources, and it might not be possible to flatten the entire
design. In this case, you can improve the performance by flattening
just the logic on the critical path.

To flatten the logic on the critical path,

1. Identify the logic associated with the critical path, using the
all_fanin command.

O1

I1

I2

In

• • •
8-52

Chapter 8: Optimizing the Design

2. Group the critical path logic.

Note:

The group command groups cells only in the context of the
current design; hence you cannot use this flow if the critical
path spans across hierarchies.

3. Characterize the critical path logic.

4. Flatten the critical path logic.

5. Ungroup the block of critical path logic.

Table 8-7 shows examples of this procedure using both dcsh and
dctcl syntax.

Table 8-7 Examples of Flattening Critical Path Logic

dcsh Example dctcl Example

all_fanin -to all_critical_pins() \
-only_cells

cp_logic = dc_shell_status

group -design critical_block \
-cell_name cp1 cp_logic

characterize cp1

current_design critical_block
set_flatten true
compile
set_flatten false

current_design ..
ungroup -simple_names cp1

set cp_logic [all_fanin \
-to [all_critical_pins]
-only_cells]

group -design critical_block \
-cell_name cp1 $cp_logic

characterize cp1

current_design critical_block
set_flatten true
compile
set_flatten false

current_design ..
ungroup -simple_names cp1
8-53

Performing Design Implementation

Automatically Ungrouping Hierarchies on the Critical
Path

Automatically ungrouping hierarchies during compile can often
improve performance. Ungrouping removes hierarchy boundaries
and allows Design Compiler to optimize over a larger number of
gates, generally improving timing. You use delay-based
auto-ungrouping to ungroup hierarchies along the critical path.

To use the auto-ungroup capability, you must use the compile
command option -auto_ungroup delay.

For more information on auto-ungrouping, See “Ungrouping
Hierarchies Automatically During Optimization” on page 5-40.

Performing a High-Effort Compile

The optimization result depends on the starting point. Occasionally,
the starting point generated by the default compile results in a local
minimum solution, and Design Compiler quits before generating an
optimal design. A high-effort compile might solve this problem.

The high-effort compile uses the -map_effort high option of the
compile command on the initial compile (on the HDL description of
the design).

dc_shell-xg-t> elaborate my_design
dc_shell-xg-t> compile -map_effort high

A high-effort compile pushes Design Compiler to the extreme to
achieve the design goal. If you have a DC-Expert license, a
high-effort compile invokes the critical path resynthesis strategy to
restructure and remap the logic on and around the critical path.
8-54

Chapter 8: Optimizing the Design

This compile strategy is CPU intensive, especially when you do not
use the incremental compile option, with the result that the entire
design is compiled using a high map effort.

Performing a High-Effort Incremental Compile

You can often improve compile performance of a high-effort compile
by using the incremental compile option. Also, if none of the previous
strategies results in a design that meets your optimization goals, a
high-effort incremental compile might produce the desired result.

An incremental compile (-incremental_mapping compile option)
allows you to incrementally improve your design by experimenting
with different approaches. An incremental compile performs only
gate-level optimization and does not perform logic-level optimization.
The resulting design’s performance is the same or better than the
original design’s.

This technique can still require large amounts of CPU time, but it is
the most successful method for reducing the worst negative slack to
zero. To reduce runtime, you can place a dont_touch attribute on
all blocks that already meet timing constraints.

dc_shell-xg-t> dont_touch noncritical_blocks
dc_shell-xg-t> compile -map_effort high \
-incremental_mapping

This incremental approach works best for a technology library that
has many variations of each logic cell.
8-55

Performing Design Implementation

Optimizing for Minimum Area

If your design has timing constraints, these constraints always take
precedence over area requirements. For area-critical designs, do not
apply timing constraints before you compile. If you want to view
timing reports, you can apply timing constraints to the design after
you compile.

If your design does not meet the area constraints, you can try the
following methods to reduce the area:

• Disable total negative slack optimization

• Enable Boolean optimization

• Manage resource selection

• Use flattening

• Optimize across hierarchical boundaries

Disabling Total Negative Slack Optimization

By default, Design Compiler prioritizes total negative slack over
meeting area constraints. This means Design Compiler performs
area optimization only on those paths that have positive slack.

To change the default priorities (prioritize area over total negative
slack), use the -ignore_tns option when setting the area
constraints.

dc_shell-xg-t> set_max_area -ignore_tns max_area
8-56

Chapter 8: Optimizing the Design

Enabling Boolean Optimization

Boolean optimization uses algorithms based on the basic rules of
Boolean algebra. Boolean optimization can use don’t care conditions
to minimize area. This algorithm performs area optimization only; do
not use Boolean optimization for timing-critical designs.

Use the compile_new_boolean_structure variable and the
-boolean true option of the set_structure command to
enable Boolean optimization. Table 8-8 shows the commands you
must run before you compile in both dcsh and dctcl syntax.

Managing Resource Selection

The decisions made during resource sharing can also significantly
affect area. Figure 8-10 shows that high-level optimization can
allocate the arithmetic operators in the same HDL code in two very
different ways.

Table 8-8 Examples of Enabling Boolean Optimization

dcsh Example dctcl Example

compile_new_boolean_structure = true
set_structure true -boolean true \

-boolean_effort medium

set compile_new_boolean_structure \
true

set_structure true -boolean true \
-boolean_effort medium
8-57

Performing Design Implementation

Figure 8-10 Resource Sharing Possibilities

The operator implementation also affects area. For example, in
Figure 8-10, the timing-driven version implements the adders as
carry-lookahead adders, and the area-driven example uses a ripple
adder implementation.

By default, high-level optimization performs resource allocation and
implementation based on timing constraints. To change the default
and force Design Compiler to base resource allocation and
implementation on area constraints, set the following variables
before compile:

dc_shell-xg-t> set_resource_allocation area_only
dc_shell-xg-t> set_resource_implementation area_only

To specify area-driven resource allocation and implementation for a
specific design, set the following variables before you compile:

dc_shell-xg-t> current_design subdesign
dc_shell-xg-t> set_resource_allocation area_only
dc_shell-xg-t> set_resource_implementation area_only

sel
(Late-arriving

signal)

A B C D
A C B D

sel

K

timing driven area driven

MUX

MUX MUX

K

8-58

Chapter 8: Optimizing the Design

Using Flattening

In most cases, flattening increases the area. In highly random
designs with unpredictable structures, flattening might reduce the
area. However, flattening is CPU intensive, and the process might
not finish for some designs.

Use the set_flatten command on specific modules that might
benefit from this technique; do not use the set_flatten command
on the top-level design.

The -minimize and -phase options, discussed in “Optimizing
Random Logic” on page 8-41, can also reduce area.

Optimizing Across Hierarchical Boundaries

Design Compiler respects levels of hierarchy and port functionality
(except when automatic ungrouping of small hierarchies is enabled).
Boundary optimizations, such as constant propagation through a
subdesign, do not occur automatically.

To fine-tune the area, you can leave the hierarchy intact and enable
boundary optimization. For greater area reduction, you might have to
remove hierarchical boundaries.

Boundary Optimization. Direct Design Compiler to perform
optimization across hierarchical boundaries (boundary optimization)
by using one of the following commands:

dc_shell-xg-t> compile -boundary_optimization

or

dc_shell-xg-t> set_boundary_optimization subdesign
8-59

Performing Design Implementation

If you enable boundary optimization, Design Compiler propagates
constants, unconnected pins, and complement information. In
designs that have many constants (VCC and GND) connected to the
inputs of subdesigns, propagation can reduce area. Figure 8-11
shows this relationship.

Figure 8-11 Benefits of Boundary Optimization

Hierarchy Removal. Removing levels of hierarchy by ungrouping
gives Design Compiler more freedom to share common terms
across the entire design. You can ungroup specific hierarchies
before optimization by using the set_ungroup command or the
compile command with the -ungroup_all option to designate
which cells you want ungrouped. Also, you can use the auto-ungroup
capability of Design Compiler to ungroup small hierarchies during
optimization. In this case, you do not specify the hierarchies to be
ungrouped.

For details about ungrouping hierarchies, see “Removing Levels of
Hierarchy” on page 5-35.

VCC

IN1

Logic

Subdesign

GND

IN2

Logic
IN1

IN2

Subdesign
8-60

Chapter 8: Optimizing the Design

Optimizing Data Paths

Datapath design is commonly used in applications that contain
extensive data manipulation, such as 3-D, multimedia, and digital
signal processing (DSP). Datapath extraction transforms arithmetic
operators (for example, addition, subtraction, and multiplication) into
datapath blocks to be implemented by a datapath generator. This
transformation improves the QOR by utilizing the carry-save
arithmetic technique.

Beginning with version W-2004.12, Design Compiler provides
improved datapath generators and better arithmetic components for
both DC Expert and DC Ultra. To take advantage of these
enhancements, make sure that the dw_foundation.sldb library is
listed in the synthetic library and the synlib_enable_dpgen
variable is set to true (the default). If necessary, use the following
commands:

• set synthetic_library dw_foundation.sldb

• set synlib_enable_dpgen true

These enhancements require a DesignWare license.

Using DC Ultra Datapath Optimization

DC Ultra enables datapath extraction and explores various datapath
and resource-sharing options during compile. DC Ultra datapath
optimization provides the following benefits:

• Shares datapath operators

• Extracts the datapath
8-61

Using DC Ultra Datapath Optimization

• Explores better solutions that might involve a different
resource-sharing configuration

• Allows the tool to make better tradeoffs between resource
sharing and datapath optimization

DC Ultra datapath optimization is enabled by default. To disable DC
Ultra datapath optimization, set
hlo_disable_datapath_optimization to true. (The default is
false.)

To use the improved datapath generators and better arithmetic
components (starting with Design Compiler version W-2004.12),
ensure the following settings:

• set synthetic_library dw_foundation.sldb

• set synlib_enable_dpgen true (default is true)

These enhancements require a DesignWare license.

Note:
If you do not specify the -no_auto_dwlib option in the
set_ultra_optimization command and
hlo_disable_datapath_optimzation is false (the default),
the dw_foundation.sldb library is automatically added to the
synthetic library list if it is not already there.

DC Ultra datapath optimization requires a DC-Ultra-Features license
and a DesignWare-Foundation license.

This section contains the following:

• Datapath Extraction

• Two Different Datapath Optimization Methods
8-62

Chapter 8: Optimizing the Design

• Methodology Flow

• Datapath Report

• Commands Specific to DC Ultra Datapath Optimization

Datapath Extraction

Datapath design is commonly used in applications that contain
extensive data manipulation, such as 3-D, multimedia, and digital
signal processing (DSP). Datapath extraction transforms arithmetic
operators (for example, addition, subtraction, and multiplication) into
datapath blocks to be implemented by a datapath generator. This
transformation improves the quality of results (QOR) by utilizing the
carry save arithmetic technique.

Carry save arithmetic does not fully propagate carries but instead
stores results in an intermediate form. For example, a conventional
implementation of the expression a + b + c + d = z would use three
carry-propagate adders (CPAs); whereas, the carry save technique
requires only one carry-propagate adder and two carry-save adders
(CSAs), as shown in Figure 8-12.

The carry-save adders are faster than the conventional
carry-propagate adders because the carry-save adder delay is
independent of bit-width. These adders use significantly less area
than carry-propagate adders because they do not use full adders for
the carry.
8-63

Using DC Ultra Datapath Optimization

Figure 8-12 Conventional Carry-Propagate Adder and Faster,
Smaller Carry-Save Adder

DC Ultra datapath optimization can extract the following
components:

• Chains of arithmetic operations

• Operators extracted as part of a datapath: *, +, -, >, <, <=, >=

Note that comparators are extracted as a part of a datapath.

• Mixed signed and unsigned operators in a single datapath block

• Variable shift operators (<<, >>, <<<, >>> for Verilog and sll, srl,
sla, sra, rol, ror for VHDL). To enable variable shift extraction, set
the hdlin_use_syn_shifters variable to true.

• MUXs

• Operations with bit truncation

• Shift operators (limited to shifts of constant amounts)

a

d

z

CSACPA
+

+

+

CPA

b

c

CPA

+

+

+

CPA

b
c

CSA

z

a

d

c

s

c

s

Improved carry-save
adder implementation
of a + b + c + d = z

Conventional carry-propagate
adder implementation of
a + b + c + d = z
8-64

Chapter 8: Optimizing the Design

The datapath flow can extract these components only if they are

• Directly connected to each other—that is, no nonarithmetic logic
between components

• Not connected to an input or output port

The following components cannot be extracted by any Synopsys
datapath methodology:

• Equality and non-equality comparators (==, !=)

• Shift operators of nonconstant amounts

• Operations that have user-specified implementations

Using DC Ultra datapath optimization, a datapath block can now
include truncated bits. This feature is illustrated in Example 8-7.

Example 8-7 Design dp Truncates d After Addition of c

module dp (a,b,c,e);

 input [63:0] a,b,c;
 output [63:0] e;
 reg [63:0] e;
 reg [127:0] d;

 always @ (a or b or c)
 begin
 d = a * b + c;
 e = a + d[127:64];
 end

endmodule
8-65

Using DC Ultra Datapath Optimization

In this example, d is truncated after the addition of c. With DC Ultra
datapath optimization, operators that follow bit truncation are
extracted. Table 8-9 illustrates the greater datapath extraction
capabilities of DC Ultra datapath optimization. The dashed line
circles those operators that are extracted.

When DC Ultra datapath optimization is used to compile design dp
in Example 8-7 on page 8-65, the following improvements are
realized:

• 350 percent timing improvement, compared to DC Expert results
for Example 8-7

Table 8-9 DC Ultra Datapath Extraction Supports Bit Truncation

DC Expert DC Ultra datapath optimization

Using DC Expert, no
datapath block is extracted.

QOR

timing: 21.4
area : 304746.42

Using DC Ultra datapath
optimization, the extracted
datapath includes the second
adder.

QOR

timing: 4.46
area: 274332.44

d[127:64]

e[63:0]

X

+

+

CPA

b[63:0]

c[63:0]

CPA

a[63:0]

a[63:0]

CPA

d[127:64]

e[63:0]

X

+

+

CPA

b[63:0]

c[63:0]

CPA

a[63:0]

a[63:0]
8-66

Chapter 8: Optimizing the Design

• 10 percent area improvement, compared to DC Expert results for
Example 8-7

Two Different Datapath Optimization Methods

To understand and contrast the two methods for handling datapaths,
consider the datapath example defined by the code in Example 8-8.

Example 8-8 Design datapath1

module datapath1 (clk, cond, a, b, c, d, e, z_out);
 input clk;
 input cond;
 input [3:0] a, b, c, d;
 input [7:0] e;
 output [7:0] z_out;
 reg [7:0] z, mult, z_out;
 always @(*)

if (cond)
begin

mult = a * b;
end

else
 begin

mult = c * d;
end

always @(posedge clk)
begin

z_out <= mult + e;
end

endmodule

DC Expert Compile

When you compile using DC Expert, the design is optimized into the
structure shown in Figure 8-13. Notice that the multipliers and adder
in the design are mapped separately to DesignWare parts. It would
be advantageous if they were merged into one datapath block, but
this is not possible with DC Expert.
8-67

Using DC Ultra Datapath Optimization

Figure 8-13 DC Expert Optimization

DC Ultra Datapath Optimization

If you compile using DC Ultra datapath optimization, the design is
optimized to the structure shown in Figure 8-14. Notice the dashed
line around the multipliers, adder, and MUX; this is meant to indicate
that DC Ultra datapath optimization has created a single datapath
block that includes the arithmetic components.

cond MUX

Multiplier (*)

(DW02_mult)

Adder (+)

z_out

(DW01_add)

a b c d

Multiplier (*)

(DW02_mult)

e

8-68

Chapter 8: Optimizing the Design

Figure 8-14 DC Ultra Datapath Optimization With Datapath Extraction

Comparison of the Two Datapath Optimizations

In many cases, creating datapath blocks with shared arithmetic
components produces better timing, CPU time, area, and QOR.
Table 8-10 gives a comparison summary of the results for the design
defined by Example 8-8 on page 8-67.

Table 8-10 Summary of DC Ultra Datapath Optimization
Improvements

Item DC Expert DC Ultra datapath optimization

Critical path slack
(report_timing)

-.30 0.11

cond MUX

z_out

a b c d

e

Multiplier (*) Multiplier (*)

Adder (+)
8-69

Using DC Ultra Datapath Optimization

Methodology Flow

To use DC Ultra datapath optimization, follow the guidelines in this
section.

Important:
DC Ultra datapath optimization requires both the
DC-Ultra-Features license and the DesignWare-Foundation
license. It is the only feature in DC Ultra to require both licenses.

1. Set set_ultra_optimization to true. This checks out the
DC-Ultra-Features license.

When you compile, the following information is displayed in the
compile log:

Information: Datapath optimization is enabled. (DP-1)

2. To use the improved datapath generators and better arithmetic
components (provided with Design Compiler version W2004.12),
ensure the following settings:

- set synthetic_library dw_foundation.sldb

Design area
(report_area)

3236 2007

Overall compile time 56.6 17.68
Datapath blocks are created
during compile.

CPU processing time
(CPU time)

143 48

Table 8-10 Summary of DC Ultra Datapath Optimization
Improvements

Item DC Expert DC Ultra datapath optimization
8-70

Chapter 8: Optimizing the Design

- set synlib_enable_dpgen true (default is true)

Note:

To disable DC Ultra datapath optimization, set
hlo_disable_datapath_optimization to true. The
default is false. If set to true, the following message is
displayed:

Warning: The built-in datapath optimization in the compile
command will be disabled. (DP-3)

3. Use the report_timing command to check timing and
optimization results.

4. Use report_resources to determine which operators were
absorbed into the datapath block. In the resource report shown
in Example 8-9, the operators absorbed into the datapath are
identified.
8-71

Using DC Ultra Datapath Optimization

Example 8-9 report_resources Using DC Ultra Datapath
Optimization for datapath1 Design
(Example 8-8 on page 8-67)

report_resources

**
Report : resources
Design : datapath1
Version: W-2004.12
Date : Fri Dec 3 17:15:46 2004
**

Resource Sharing Report for design datapath1 in file
 /usr/home/..../datapath1.v

==
| | | | Contained | |
| Resource | Module | Parameters | Resources | Contained Operations |
==
r262	mult_15_DP_OP_246_3372			mult_11
r264	mult_15_DP_OP_246_3372			mult_15
r266	mult_15_DP_OP_246_3372			add_19
==

Datapath Report for design datapath1 in file /usr/home/..../datapath1.v

RTL-datapath Connections for mult_15_DP_OP_246_3372-str
==
| | | | Bus |
| RTL Wire | Datapath Port | Direction | Width |
==
c	I1	input	4
d	I2	input	4
a	I3	input	4
b	I4	input	4
e	I5	input	8
N0	C0	control	1
N1	C1	control	1
N26-N19	O1	output	8
==

Datapath Blocks in mult_15_DP_OP_246_3372-str
==
| | Out | | Contained | Operation |
| Port | Width | Datapath Block | Operation_Line | Type |
==
8-72

Chapter 8: Optimizing the Design

Fanout_2	8	I1 * I2	mult_15	UNSIGNED
Fanout_4	8	{ C0 , C1 } ? Fanout_3 : Fanout_2		
			op4	MUX_OP
			op5	MUX_OP
Fanout_3	8	I3 * I4	mult_11	UNSIGNED
O1	8	Fanout_4 + I5	add_19	UNSIGNED
==

Implementation Report

===
| | | Current | Set |
| Cell | Module | Implementation | Implementation |
===
| mult_15_DP_OP_246_3372_1 | mult_15_DP_OP_246_3372 | str |
===

No multiplexors to report
1

Notice in this example that when components are absorbed into a
datapath block, the resources report (report_resources
command) also includes a datapath report.

Datapath Report

To further understand how to read the datapath report contained in
the resources report, consider the code in Example 8-10.

Example 8-10 Design add: Code

1 module add (a,b,c,d,z);
2 input [7:0] a,b,c,d;
3 output [15:0] z;
4 assign z = a + b - c + d;
5 endmodule

When this code is compiled using DC Ultra datapath optimization,
the report_resources command generates the report shown in
Example 8-11.
8-73

Using DC Ultra Datapath Optimization

Example 8-11 Datapath Report for Design add

**
Report : resources
Design : add
Version: W-2004.12
Date : Fri Dec 3 13:44:07 2004
**

Resource Sharing Report for design add in file
 /usr/home/..../dp_add.v

==
| | | | Contained | |
| Resource | Module | Parameters | Resources | Contained Operations |
==
r256	add_4_2_DP_OP_245_8218			add_1_root_sub_4
r258	add_4_2_DP_OP_245_8218			sub_0_root_sub_4
r260	add_4_2_DP_OP_245_8218			add_4_2
==

Datapath Report for design add in file /usr/home/..../dp_add.v

RTL-datapath Connections for add_4_2_DP_OP_245_8218-str
==
| | | | Bus |
| RTL Wire | Datapath Port | Direction | Width |
==
a	I1	input	8
b	I2	input	8
c	I3	input	8
d	I4	input	8
z	O1	output	16
==

Datapath Blocks in add_4_2_DP_OP_245_8218-str
==
| | Out | | Contained | Operation |
| Port | Width | Datapath Block | Operation_Line | Type |
==
O1	16	I1 + I2 - I3 + I4	add_4_2	UNSIGNED
			sub_0_root_sub_4	
				UNSIGNED
			add_1_root_sub_4	
				UNSIGNED
==

Implementation Report
8-74

Chapter 8: Optimizing the Design

===
| | | Current | Set |
| Cell | Module | Implementation | Implementation |
===
| add_4_2_DP_OP_245_8218_2 | add_4_2_DP_OP_245_8218 | str |
===

No multiplexors to report
1

In this example, the report_resources command generates the
following three reports:

• Resource Sharing Report

• Datapath Report

• Implementation Report

From the Resource Sharing Report, you see that there are three
arithmetic operators identified as add_1_root_sub_4,
sub_0_root_sub_4, and add_4_2. Note that the suffix of the
operation names xxxx_4 represents the line number in the RTL code
(Example 8-10 on page 8-73), and if two adders appear in one line,
as in line 4 of the example, the second adder is identified in the report
as xxx_4_2.

From the Datapath Report you see that the operators are merged
into the single datapath module add_4_2_DP_OP_245_8218-str.
The RTL-datapath Connections table shows the input and output
ports of the datapath and their connections to the actual RTL. The
Datapath Blocks table shows the datapath expression and operation
type.

If you set the compile_report_dp variable to true, the Datapath
Report is printed to the screen and log file during compile.
8-75

Using DC Ultra Datapath Optimization

is

th

tic
he

og

un
t

Commands Specific to DC Ultra Datapath Optimization

Commands specific to DC Ultra datapath optimization are described
in Table 8-11.

For additional information on these commands, see the man pages.

Table 8-11 DC Ultra Datapath Optimization Commands

Command Description

set_ultra_optimization Set to true to enable DC Ultra; the datapath optimization feature
one of the DC Ultra optimization techniques. Also, set the
synlib_enable_dpgen variable to true to utilize optimal datapa
generation.

If you do not specify the -no_auto_dwlib option, the
dw_foundation.sldb library is automatically added to the synthe
library list unless it is already listed. If you do specify this option, t
dw_foundation.sldb library is not used.

When DC Ultra datapath optimization is enabled, your compile l
displays the following message:

Information: Datapath optimization is enabled. (DP-1)

hlo_disable_datapath_
optimization

Set to true to disable only the DC Ultra datapath optimization
feature of DC Ultra. The default is false.

Note:
DC Ultra datapath optimization requires both the
DC-Ultra-Features license and the DesignWare-Foundation
license. The foundation license is pulled when you compile. To r
DC Ultra if you do not have the foundation license, you must se
hlo_disable_datapath_optimization to true; otherwise an
error is returned.
8-76

Chapter 8: Optimizing the Design

Table 8-12 summarizes the conditions that enable and disable DC
Ultra datapath optimization.

Table 8-12 Conditions That Enable and Disable Datapath
Optimization

set_ultra_optimization hlo_disable_datapath_optimization Datapath optimization
enabled (yes or no)

true false yes

true true no

false false no

false true no
8-77

Using DC Ultra Datapath Optimization

8-78

Chapter 8: Optimizing the Design

9
Analyzing and Resolving Design Problems9

Use the reports generated by Design Compiler to analyze and debug
your design. You can generate reports both before and after you
compile your design. Generate reports before compiling to check
that you have set attributes, constraints, and design rules properly.
Generate reports after compiling to analyze the results and debug
your design.

This chapter contains the following sections:

• Checking for Design Consistency

• Analyzing Your Design During Optimization

• Analyzing Design Problems

• Analyzing Timing Problems

• Resolving Specific Problems
9-1

Checking for Design Consistency

A design is consistent when it does not contain errors such as
unconnected ports, constant-valued ports, cells with no input or
output pins, mismatches between a cell and its reference, multiple
driver nets, connection class violations, or recursive hierarchy
definitions.

Design Compiler runs the -check_design -summary command
on all designs that are compiled; however, you can also use the
command explicitly to verify design consistency. The command
reports a list of warning and error messages.

• It reports an error if it finds a problem that Design Compiler
cannot resolve. You cannot compile a design that has
check_design errors.

• It reports a warning if it finds a problem that indicates a corrupted
design or a design mistake not severe enough to cause the
compile command to fail.

Use options to the check_design command as follows:

To do this Use this

To perform checks at only the current level of
hierarchy (by default, the check_design
command validates the entire design hierarchy)

-one_level

Disable warnings -no_warnings

Display a summary of warning messages instead
of one message per warning

-summary

Display a list of all multiply instantiated designs
along with instance names (by default warning
messages related to multiply instantiated designs
are suppressed)

-multiple_designs
9-2

Chapter 9: Analyzing and Resolving Design Problems

Note:
The -multiple_designs option is not available in DB mode.

Analyzing Your Design During Optimization

Design Compiler provides the following capabilities for analyzing
your design during optimization:

• It lets you customize the compile log.

• It lets you save intermediate design databases.

The following sections describe these capabilities.

Customizing the Compile Log

The compile log records the status of the compile run. Each
optimization task has an introductory heading, followed by the
actions taken while that task is performed. There are four tasks in
which Design Compiler works to reduce the compile cost function:

• Delay optimization

• Design rule fixing, phase 1

• Design rule fixing, phase 2

• Area optimization

While completing these tasks, Design Compiler performs many trials
to determine how to reduce the cost function. For this reason, these
tasks are collectively known as the trials phase of optimization.
9-3

Analyzing Your Design During Optimization

By default, Design Compiler logs each action in the trials phase by
providing the following information:

• Elapsed time

• Design area

• Worst negative slack

• Total negative slack

• Design rule cost

• Endpoint being worked on

You can customize the trials phase output by setting the
compile_log_format variable. Table 9-1 lists the available data
items and the keywords used to select them. For more information
about customizing the compile log, see the man page for the
compile_log_format variable.

Table 9-1 Compile Log Format Keywords

Column Column header Keyword Column description

Area AREA area Shows the area of the design.

CPU seconds CPU SEC cpu Shows the process CPU time
used (in seconds).

Design rule
cost

DESIGN RULE COST drc Measures the difference
between the actual results
and user-specified design
rule constraints.

Elapsed time ELAPSED TIME elap_time Tracks the elapsed time since
the beginning of the current
compile or reoptimization of
the design.
9-4

Chapter 9: Analyzing and Resolving Design Problems

Endpoint ENDPOINT endpoint Shows the endpoint being
worked on. When delay
violations are being fixed, the
endpoint is a cell or a port.
When design rule violations
are being fixed, the endpoint
is a net. When area violations
are being fixed, no endpoint is
printed.

Maximum delay
cost

MAX DELAY COST max_delay Shows the maximum delay
cost of the design.

Megabytes of
memory

MBYTES mem Shows the process memory
used (in MB).

Minimum delay
cost

MIN DELAY COST min_delay Shows the minimum delay
cost of the design.

Path group PATH GROUP group_path Shows the path group of an
endpoint.

Time of day TIME OF DAY time Shows the current time.

Total negative
slack

TOTAL NEG SLACK tns Shows the total negative
slack of the design.

Trials TRIALS trials Tracks the number of
transformations that the
optimizer tried before making
the current selection.

Worst negative
slack

WORST NEG SLACK wns Shows the worst negative
slack of the current path
group.

Table 9-1 Compile Log Format Keywords (Continued)

Column Column header Keyword Column description
9-5

Analyzing Your Design During Optimization

Saving Intermediate Design Databases

Design Compiler provides the capability to output an intermediate
design database during the trials phase of the optimization process.
This capability is called checkpointing. Checkpointing saves the
entire hierarchy of the intermediate design. You can use this
intermediate design to debug design problems, as described in
“Analyzing Design Problems” on page 9-7.

You can automatically checkpoint the design based on CPU time
intervals, optimization phase, or both.

To checkpoint based on elapsed CPU time, set the
compile_checkpoint_cpu_interval variable to the required
time interval (in minutes). Each checkpoint overwrites the previous
checkpoint file.

To checkpoint based on optimization phase, set the
compile_checkpoint_phases variable to true. This creates a
checkpoint file at the following points: before starting delay
optimization (pre-delay), before starting the first phase of design rule
fixing (pre-DRC1), before starting the second phase of design rule
fixing (pre-DRC2), and before starting area optimization (pre-area).
Design Compiler saves each checkpoint in a separate file. Table 9-2
lists the default file name for each phase and the variable used to
control each file name. You can turn off checkpointing for any phase
by setting the corresponding variable to none.

Table 9-2 Phase-Based Checkpoint Files

Phase Default file name Variable

Pre-delay ./CHECKPOINT_PRE_DELAY.db compile_checkpoint_pre_delay_filename

Pre-DRC1 ./CHECKPOINT_PRE_DRC1.db compile_checkpoint_pre_drc1_filename
9-6

Chapter 9: Analyzing and Resolving Design Problems

Analyzing Design Problems

Table 9-3 shows the design analysis commands provided by Design
Compiler. For additional information about these commands, see the
man pages.

Pre-DRC2 ./CHECKPOINT_PRE_DRC2.db compile_checkpoint_pre_drc2_filename

Pre-area ./CHECKPOINT_PRE_AREA.db compile_checkpoint_pre_area_filename

Table 9-3 Commands to Analyze Design Objects

Object Command Description

Design report_design
report_area
report_hierarchy
report_resources

Reports design characteristics.
Reports design size and object counts.
Reports design hierarchy.
Reports resource implementations.

Instances report_cell Displays information about instances.

References report_reference Displays information about references.

Pins report_transitive_fanin
report_transitive_fanout

Reports fanin logic.
Reports fanout logic.

Ports report_port
report_bus
report_transitive_fanin
report_transitive_fanout

Displays information about ports.
Displays information about bused ports.
Reports fanin logic.
Reports fanout logic.

Nets report_net
report_bus
report_transitive_fanin
report_transitive_fanout

Reports net characteristics.
Reports bused net characteristics.
Reports fanin logic.
Reports fanout logic.

Clocks report_clock Displays information about clocks.

Table 9-2 Phase-Based Checkpoint Files (Continued)

Phase Default file name Variable
9-7

Analyzing Design Problems

Analyzing Timing Problems

Before you begin debugging timing problems, verify that your design
meets the following requirements:

• You have defined the operating conditions.

• You have specified realistic constraints.

• You have appropriately budgeted the timing constraints.

• You have properly constrained the paths.

• You have described the clock skew.

If your design does not meet these requirements, make sure it does
before you proceed.

After producing the initial mapped netlist, use the
report_constraint command to check your design’s
performance.

Table 9-4 lists the timing analysis commands.

Table 9-4 Timing Analysis Commands

Command Analysis task description

report_design Shows operating conditions, wire load model and mode,
timing ranges, internal input and output, and disabled
timing arcs.

check_timing Checks for unconstrained timing paths and clock-gating
logic.

report_port Shows unconstrained input and output ports and port
loading.

report_timing_requirements Shows all timing exceptions set on the design.
9-8

Chapter 9: Analyzing and Resolving Design Problems

Resolving Specific Problems

This section provides examples of design problems you might
encounter and describes the workarounds for them.

Analyzing Cell Delays

Some cell delays shown in the full path timing report might seem too
large. Use the report_delay_calculation command to
determine how Design Compiler calculated a particular delay value.

Example 9-1 shows a full path timing report with a large cell
delay value.

report_clock Checks the clock definition and clock skew information.

derive_clocks Checks internal clock and unused registers.

report_path_group Shows all timing path groups in the design.

report_timing Checks the timing of the design.

report_constraint Checks the design constraints.

report_delay_calculation Reports the details of a delay arc calculation.

Table 9-4 Timing Analysis Commands (Continued)

Command Analysis task description
9-9

Resolving Specific Problems

Example 9-1 Full Path Timing Report
**
Report : timing
 -path full
 -delay max
 -max_paths 1
Design : Adder8
Version: 1999.05
Date : Mon Jan 4 10:56:49 1999
**

Operating Conditions:
Wire Loading Model Mode: top

 Startpoint: cin (input port)
 Endpoint: cout (output port)
 Path Group: (none)
 Path Type: max

 Point Incr Path

 input external delay 0.00 0.00 f
 cin (in) 0.00 0.00 f
 U19/Z (AN2) 0.87 0.87 f
 U18/Z (EO) 1.13 2.00 f
 add_8/U1_1/CO (FA1A) 2.27 4.27 f
 add_8/U1_2/CO (FA1A) 1.17 5.45 f
 add_8/U1_3/CO (FA1A) 1.17 6.62 f
 add_8/U1_4/CO (FA1A) 1.17 7.80 f
 add_8/U1_5/CO (FA1A) 1.17 8.97 f
 add_8/U1_6/CO (FA1A) 1.17 10.14 f
 add_8/U1_7/CO (FA1A) 1.17 11.32 f
 U2/Z (EO) 1.06 12.38 f
 cout (out) 0.00 12.38 f
 data arrival time 12.38 f

 (Path is unconstrained)

The delay from port cin through cell FA1A seems large (2.27 ns).
Enter the following command to determine how Design Compiler
calculated this delay:

dc_shell-xg-t> report_delay_calculation \
-from add_8/U1_1/A -to add_8/U1_1/CO
9-10

Chapter 9: Analyzing and Resolving Design Problems

Example 9-2 shows the results of this command.

Example 9-2 Delay Calculation Report
**
Report : delay_calculation
Design : Adder8
Version: 1997.01
Date : Mon Apr 7 13:23:12 1997
**

From pin: add_8/U1_1/A
To pin: add_8/U1_1/CO

arc sense: unate
arc type: cell
Input net transition times: Dt_rise = 0.1458, Dt_fall = 0.0653

Rise Delay computation:
rise_intrinsic 1.89 +
rise_slope * Dt_rise 0 * 0.1458 +
rise_resistance * (pin_cap + wire_cap) / driver_count
0.1458 * (2 + 0) / 1
--
Total 2.1816

Fall Delay computation:
fall_intrinsic 2.14 +
fall_slope * Dt_fall 0 * 0.0653 +
fall_resistance * (pin_cap + wire_cap) / driver_count
0.0669 * (2 + 0) / 1
--
Total 2.2738

Finding Unmapped Cells

All unmapped cells have the is_unmapped attribute. You can use
the dcsh filter and find commands or the dctcl get_cells
command to locate all unmapped components:

dc_shell-xg-t> get_cells -hier -filter "@is_unmapped==true"
9-11

Resolving Specific Problems

dc_shell> filter find(-hier, cell, "*") "@is_unmapped==true"

Finding Black Box Cells

All black box cells have the is_black_box attribute. You can use
the dcsh filter and find commands or the dctcl get_cells
command to locate all black box cells:

dc_shell-xg-t> get_cells -hier -filter\
"is_black_box==true"

dc_shell> filter find(-hier, cell, "*") \
"@is_black_box==true"

Finding Hierarchical Cells

All hierarchical cells have the is_hierarchical attribute. You can
use the dcsh filter and find commands or the Tcl
get_designs command to locate all hierarchical cells:

dc_shell-xg-t> get_designs -filter "is_hierarchical==true"

dc_shell> filter find(design, "*") "@is_hierarchical==true"

Disabling Reporting of Scan Chain Violations

If your design contains scan chains, it is likely that these chains are
not designed to run at system speed. This can cause false violation
messages when you perform timing analysis. To mask these
messages, use the set_disable_timing command to break the
scan-related timing paths (scan input to scan output and scan enable
to scan output).
9-12

Chapter 9: Analyzing and Resolving Design Problems

dc_shell-xg-t> set_disable_timing my_lib/scanf \
-from TI -to Q

dc_shell-xg-t> set_disable_timing my_lib/scanf \
-from CP -to TE

This example assumes that

• scanf is the scan cell in your technology library

• TI is the scan input pin on the scanf cell

• TE is the scan enable on the scanf cell

• Q is the scan output pin on the scanf cell

Example 9-3 and Example 9-4 show scripts that you can use to
identify the scan pins in your technology library.

Example 9-3 Script to Identify Scan Pins (dcsh)
filter find(cell, my_lib/*) "@is_sequential==true"
seq_cell_list = dc_shell_status
foreach (seq_cell, seq_cell_list) {
 seq_pins = seq_cell + "/*"
 filter find(pin, seq_pins) "@signal_type==test_scan_in"

si = dc_shell_status
 if (si) {
 echo "Scan pins for cell " seq_cell
 echo " scan input: " si

filter find(pin, seq_pins) "@signal_type==test_scan_out"
 echo " scan output: " dc_shell_status
 }
}

9-13

Resolving Specific Problems

Example 9-4 Script to Identify Scan Pins (dctcl)
set seq_cell_list [get_cells class/* -filter "@is_sequential==true"]
foreach_in_collection seq_cell $seq_cell_list {
 set seq_pins "[get_object_name $seq_cell]/*"
 set si [get_pins $seq_pins -filter "@signal_type==test_scan_in"]
if {[sizeof_collection $si] > 0} then {
 echo "Scan pins for cell [get_object_name $seq_cell]"
 echo " scan input: [get_object_name $si]"
 echo " scan output: [get_object_name [get_pins $seq_pins \
 -filter "@signal_type==test_scan_out"]]"
 }
}

Insulating Interblock Loading

Design Compiler determines load distribution in the driving block. If
a single output port drives many blocks, a huge incremental cell
delay can result. To insulate the interblock loading, fan the heavily
loaded net to multiple output ports in the driving block. Evenly divide
the total load among these output ports.

Preserving Dangling Logic

By default, Design Compiler optimizes away dangling logic. Use one
of the following methods to preserve dangling logic (for example,
spare cells) during optimization:

• Place the dont_touch attribute on the dangling logic.

• Connect the dangling logic to a dummy port.
9-14

Chapter 9: Analyzing and Resolving Design Problems

Preventing Wire Delays on Ports

If your design contains unwanted wire delays between ports and I/O
cells, you can remove these wire delays by specifying zero
resistance (infinite drive strength) on the net. Use the
set_resistance command to specify the net resistance. For
example, enter one of the following commands (depending on your
command language):

dc_shell-xg-t> set_resistance 0 [get_nets wire_io4]

dc_shell> set_resistance 0 find(net, wire_io4)

Breaking a Feedback Loop

Follow these steps to break a feedback loop in your design:

1. Find the feedback loop in your design by using the
report_timing -loop option.

2. Break the feedback loop by specifying the path as a false path.

Analyzing Buffer Problems

Note:
This section uses the term buffer to indicate either a buffer or an
inverter chain.

This section describes the following topics:

• Buffer insertion behavior

• Missing buffer problems
9-15

Resolving Specific Problems

• Extra buffer problems

• Hanging buffer problems

• Modified buffer network problems

Understanding Buffer Insertion

Design Compiler inserts buffers to correct maximum fanout load or
maximum transition time violations. If Design Compiler does not
insert buffers during optimization, the tool probably does not identify
a violation. For more information about the maximum fanout load and
maximum transition time design rules, see “Setting Design Rule
Constraints” on page 7-3.

Use the report_constraint command to get details on
constraint violations.

Figure 9-1 shows a design containing the IV1 cell.

Figure 9-1 Buffering Example

IN

IV1

OUT
A Z
9-16

Chapter 9: Analyzing and Resolving Design Problems

Table 9-5 gives the attributes defined in the technology library for the
IV1 cell.

Example 9-3 shows the constraint report generated by the command
sequences shown in Table 9-6.

Table 9-5 IV1 Library Attributes

Pin Attribute Value

A

direction input

capacitance
fanout_load

1.5
1

Z

direction output

rise_resistance
fall_resistance
max_fanout
max_transition

0.75
0.75
3
2.5

Table 9-6 report_constraint Examples

dcsh Command Sequence dctcl Command Sequence

set_drive 0 find(port,IN)
set_load 0 find(port,OUT)
report_constraint

set_drive 0 [get_ports IN]
set_load 0 [get_ports OUT]
report_constraint
9-17

Resolving Specific Problems

Example 9-5 Constraint Report

**
Report : constraint
Design : buffer_example
Version: 1999.05
Date : Mon Jan 4 10:56:49 1999
**

 Constraint Cost

max_transition 0.00 (MET)
max_fanout 0.00 (MET)

To see the constraint cost functions used by Design Compiler,
specify the -verbose option of the report_constraint
command (shown in Example 9-4).

Example 9-6 Constraint Report (-verbose)

**
Report : constraint

-verbose
Design : buffer_example
Version: 1999.05
Date : Mon Jan 4 10:56:49 1999
**

 Net: OUT

 max_transition 2.50
 - Transition Time 0.00

 Slack 2.50 (MET)

 Net: OUT

 max_fanout 3.00
 - Fanout 0.00

 Slack 3.00 (MET)
9-18

Chapter 9: Analyzing and Resolving Design Problems

The verbose constraint report shows that two constraints are
measured:

• Maximum transition time (2.50)

• Maximum fanout load (3.00)

Design Compiler derives the constraint values from the attribute
values on the output pin of the IV1 cell.

When you compile this design, Design Compiler does not modify the
design because the design meets the specified constraints.

To list all constraint violations, use the -all_violators option of
the report_constraint command (shown in Example 9-7).

Example 9-7 Constraint Report (-all_violators)

**
Report : constraint

-all_violators
Design : buffer_example
Version: 1999.05
Date : Mon Jan 4 10:56:49 1999
**

This design has no violated constraints.

This design does not have any constraint violations. Changing the
port attributes, however, can cause constraint violations to occur.
Example 9-6 shows the result of the following command sequence:

dc_shell-xg-t> set_drive 2.5 IN
dc_shell-xg-t> set_max_fanout 0.75 IN
dc_shell-xg-t> set_load 4 OUT
dc_shell-xg-t> set_fanout_load 3.5 OUT
dc_shell-xg-t> report_constraint -all_violators -verbose
9-19

Resolving Specific Problems

Example 9-8 Constraint Report (After Port Attributes Are Modified)

**
Report : constraint

-all_violators
-verbose

Design : buffer_example
Version: 1999.05
Date : Mon Jan 4 10:56:49 1999
**

 Net: OUT

 max_transition 2.50
 - Transition Time 3.00

 Slack -0.50 (VIOLATED)

 Net: OUT

 max_fanout 3.00
 - Fanout 3.50

 Slack -0.50 (VIOLATED)

 Net: IN

 max_fanout 0.75
 - Fanout 1.00

 Slack -0.25 (VIOLATED)

This design now contains three violations:

• Maximum transition time violation at OUT

Actual transition time is 4.00 * 0.75 = 3.00, which is greater than
the maximum transition time of 2.50.

• Maximum fanout load violation at OUT

Actual fanout load is 3.5, which is greater than the maximum
fanout load of 3.00.
9-20

Chapter 9: Analyzing and Resolving Design Problems

• Maximum fanout load violation at IN

Actual fanout load is 1.00, which is greater than the maximum
fanout load of 0.75.

There is no max_transition violation at IN, even though the
transition time on this net is 2.5 * 1.5 = 3.75, which is well above the
max_transition requirement of 2.50. Design Compiler does not
recognize this as a violation because the requirement of 2.50 is a
design rule from the output pin of cell IV1. This requirement applies
only to a net driven by this pin. The IV1 output pin does not drive the
net connected to port IN, so the max_transition constraint does
not apply to this net.

If you want to constrain the net attached to port IN to a maximum
transition time of 2.50, enter one of the following commands
(depending on your command language):

dc_shell-xg-t> set_max_transition 2.5 [get_ports IN]

dc_shell> set_max_transition 2.5 find(port,IN)

This command causes report_constraint -verbose
-all_violators to add the following lines to the report shown in
Example 9-6:

Net: IN
max_transition 2.50
- Transition Time 3.75

Slack -1.25 (VIOLATED)

When you compile this design, Design Compiler adds buffering to
correct the max_transition violations.
9-21

Resolving Specific Problems

Remember the following points when you work with buffers in Design
Compiler:

• The max_fanout and max_transition constraints control
buffering; be sure you understand how each is used.

• Design Compiler fixes only violations it detects.

• The report_constraint command identifies any violations.

Correcting for Missing Buffers

Missing buffers present the most frequent buffering problem. It
usually results from one of the following conditions:

• Incorrectly specified constraints

• Improperly constrained designs

• Incorrect assumptions about constraint behavior

To debug the problem, generate a constraint report
(report_constraint) to determine whether Design Compiler
recognized any violations.

If Design Compiler reports no max_fanout or max_transition
violations, check the following:

• Are constraints applied?

• Is the library modeled for the correct attributes?

• Are the constraints tight enough?

If Design Compiler recognizes a violation but compile does not
insert buffers to remove the violation, check the following:

• Does the violation exist after compile?
9-22

Chapter 9: Analyzing and Resolving Design Problems

• Are there dont_touch or dont_touch_network attributes?

• Are there three-state pins that require buffering?

• Have you considered that max_transition takes precedence
over max_fanout?

Incorrectly Specified Constraints. A vendor might omit an
attribute you want to use, such as fanout_load. If a vendor has not
set this attribute in the library, Design Compiler does not find any
violations for the constraint. You can check whether attributes have
been assigned to cell pins by using the get_attribute command
with the dcsh find or the Tcl get_pins command. For example, to
determine whether a pin has a fanout_load attribute, enter

dc_shell-xg-t> get_attribute \
[get_pins library/cell/pin] fanout_load

dc_shell> get_attribute \
find(pin,library/cell/pin) fanout_load

The vendor might have defined default_fanout_load in the
library. If this value is set to zero or to an extremely small number,
any pin that does not have an explicit fanout_load attribute
inherits this value.

Improperly Constrained Designs. Occasionally, a vendor uses
extremely small capacitance values (on the order of 0.001). If your
scripts do not take this into account, you might not be constraining
your design tightly enough. Try setting an extreme value, such as
0.00001, and run report_constraint to make sure a violation
occurs.
9-23

Resolving Specific Problems

You can use the load_of command with the dcsh find or the Tcl
get_pins command to check the capacitance values in the
technology library:

dc_shell-xg-t> load_of [get_pins library/cell/pin]

dc_shell> load_of find(pin,library/cell/pin)

Incorrect Assumptions About Constraint Behavior. Check to
make sure you are not overlooking one of the following aspects of
constraint behavior:

• A common mistake is the assumption that the
default_max_transition or the default_max_fanout
constraint in the technology library applies to input ports. These
constraints apply only to the output pins of cells within the library.

• Maximum transition time takes precedence over maximum
fanout load within Design Compiler. Therefore, a maximum
fanout violation might not be corrected if the correction affects the
maximum transition time of a net.

• Design Compiler might have removed a violation by sizing gates
or modifying the structure of the design.

Generate a constraint report after optimization to verify that the
violation still exists.

• Design Compiler cannot correct violations if dont_touch
attributes exist on the violating path.

You might have inadvertently placed dont_touch attributes on
a design or cell reference within the hierarchy. If so, Design
Compiler reports violations but cannot correct them during
optimization.
9-24

Chapter 9: Analyzing and Resolving Design Problems

Use the report_cell command and the get_attribute
command to see whether these attributes exist.

• Design Compiler cannot correct violations if
dont_touch_network attributes exist on the violating path.

If you have set the dont_touch_network attribute on a port or
pin in the design, all elements in the transitive fanout of that port
or pin inherit the attribute. If this attribute is set, Design Compiler
reports violations but does not modify the network during
optimization.

Use the remove_attribute command to remove this attribute
from the port or net.

• Design Compiler does not support additional buffering on
three-state pins.

For simple three-state cells, Design Compiler attempts to enlarge
a three-state cell to a stronger three-state cell.

For complex three-state cells, such as sequential elements or
RAM cells, Design Compiler cannot build the logic necessary to
duplicate the required functionality. In such cases, you must
manually add the extra logic or rewrite the source HDL to
decrease the fanout load of such nets.

Correcting for Extra Buffers

Extremely conservative numbers for max_transition,
max_fanout, or max_capacitance force Design Compiler to
buffer nets excessively. If your design has an excessive number of
buffers, check the accuracy of the design rule constraints applied to
the design.
9-25

Resolving Specific Problems

If you have specified design rule constraints that are more restrictive
than those specified in the technology library, evaluate the necessity
for these restrictive design rules.

You can debug this type of problem by setting the priority of the
maximum delay cost function higher than the maximum design rule
cost functions (using the set_cost_priority -delay
command). Changing the priority prevents Design Compiler from
fixing the maximum design rule violations if the fix results in a timing
violation.

Correcting for Hanging Buffers

A buffer that does not fan out to any cells is called a hanging buffer.
Hanging buffers often occur because the buffer cells have
dont_touch attributes. These attributes either can be set by you, in
the hope of retaining a buffer network, or can be inherited from a
library.

The dont_touch attribute on a cell signals to Design Compiler that
the cell should not be touched during optimization. Design Compiler
follows these instructions by leaving the cell in the design. But
because the buffer might not be needed to meet the constraints that
are set, Design Compiler disconnects the net from the output. The
design meets your constraints, but because the cell has the
dont_touch attribute, the cell cannot be removed. Remove the
dont_touch attribute to correct this problem.

Correcting Modified Buffer Networks

Sometimes it appears that Design Compiler modifies a buffer
network that has dont_touch attributes. This problem usually
occurs when you place the dont_touch attribute on a cell and
expect the cells adjacent to that cell to remain in the design.
9-26

Chapter 9: Analyzing and Resolving Design Problems

Design Compiler does not affect the cell itself but modifies the
surrounding nets and cells to attain the optimal structure. If you are
confident about the structure you want, you can use one of the
following strategies to preserve your buffer network:

• Group the cells into a new hierarchy and set dont_touch
attributes on that hierarchy.

• Set the dont_touch_network attribute on the pin that begins
the network.

• Set the dont_touch attribute on all cells and nets within the
network that you want to retain.
9-27

Resolving Specific Problems

9-28

Chapter 9: Analyzing and Resolving Design Problems

A
Design Example A

Optimizing a design can involve using different compile strategies for
different levels and components in the design. This appendix shows
a design example that uses several compile strategies. Earlier
chapters provide detailed descriptions of how to implement each
compile strategy. Note that the design example used in this appendix
does not represent a real-life application.

This appendix includes the following sections:

• Design Description

• Setup File

• Default Constraints File

• Compile Scripts

You can access the files described in these sections at
$SYNOPSYS/doc/syn/guidelines.
A-1

Design Description

The design example shows how you can constrain designs by using
a subset of the commonly used dc_shell commands and how you
can use scripts to implement various compile strategies.

The design uses synchronous RTL and combinational logic with
clocked D flip-flops.

Figure A-1 shows the block diagram for the design example. The
design contains seven modules at the top level: Adder16,
CascadeMod, Comparator, Multiply8x8, Multiply16x16, MuxMod,
and PathSegment.

Figure A-1 Block Diagram for the Design Example

Figure A-2 shows the hierarchy for the design example.

Counter
Comparator

Adder8Adder8 Adder16

CascadeMod

PathSegment

Multiply

Multiply

MuxMod

ChipLevel

8x8

16x16

Comparator
A-2

Appendix A: Design Example

Figure A-2 Hierarchy for the Design Example

The top-level modules and the compilation strategies for optimizing
them are

Adder16

Uses registered outputs to make constraining easier. Because
the endpoints are the data pins of the registers, you do not need
to set output delays on the output ports.

CascadeMod

Uses a hierarchical compile strategy. The compile script for this
design sets the constraints at the top level (of CascadeMod)
before compilation.

The CascadeMod design instantiates the Adder8 design twice.
The script uses the compile-once-don’t-touch method for the
Comparator module.

Comparator

Is a combinational block. The compile script for this design uses
the virtual clock concept to show the use of virtual clocks in a
design.

ChipLevel

Adder16

Adder8Adder8 CounterComparator

MultiplyCascadeMod MuxMod PathSegment8x8
Multiply
16x16Comparator
A-3

Design Description

The ChipLevel design instantiates Comparator twice. The
compile script (for CascadeMod) uses the
compile-once-don’t-touch method to resolve the multiple
instances.

The compile script specifies wire load model and mode instead
of using automatic wire load selection.

Multiply8x8

Shows the basic timing and area constraints used for optimizing
a design.

Multiply16x16

Ungroups DesignWare parts before compilation. Ungrouping
your hierarchical module might help achieve better synthesis
results. The compile script for this module defines a two-cycle
path at the primary ports of the module.

MuxMod

Is a combinational block. The script for this design uses the
virtual clock concept.

PathSegment

Uses path segmentation within a module. The script uses the
set_multicycle_path command for a two-cycle path within
the module and the group command to create a new level of
hierarchy.

Example A-1 through Example A-11 provide the Verilog source code
for the ChipLevel design.
A-4

Appendix A: Design Example

Example A-1 ChipLevel.v
/* Date: May 11, 1995 */
/* Example Circuit for Baseline Methodology for Synthesis */
/* Design does not show any real-life application but rather
 it is used to illustrate the commands used in the Baseline
 Methodology */

module ChipLevel (data16_a, data16_b, data16_c, data16_d, clk, cin, din_a,
 din_b, sel, rst, start, mux_out, cout1, cout2, s1, s2, op,
 comp_out1, comp_out2, m32_out, regout);

 input [15:0] data16_a, data16_b, data16_c, data16_d;
 input [7:0] din_a, din_b;
 input [1:0] sel;
 input clk, cin, rst, start;
 input s1, s2, op;
 output [15:0] mux_out, regout;
 output [31:0] m32_out;
 output cout1, cout2, comp_out1, comp_out2;

 wire [15:0] ad16_sout, ad8_sout, m16_out, cnt;

Adder16 u1 (.ain(data16_a), .bin(data16_b), .cin(cin), .cout(cout1),
 .sout(ad16_sout), .clk(clk));

CascadeMod u2 (.data1(data16_a), .data2(data16_b), .cin(cin), .s(ad8_sout),
 .cout(cout2), .clk(clk), .comp_out(comp_out1), .cnt(cnt),
 .rst(rst), .start(start));

Comparator u3 (.ain(ad16_sout), .bin(ad8_sout), .cp_out(comp_out2));

Multiply8x8 u4 (.op1(din_a), .op2(din_b), .res(m16_out), .clk(clk));

Multiply16x16 u5 (.op1(data16_a), .op2(data16_b), .res(m32_out), .clk(clk));

MuxMod u6 (.Y_IN(mux_out), .MUX_CNT(sel), .D(ad16_sout), .R(ad8_sout),
 .F(m16_out), .UPC(cnt));

PathSegment u7 (.R1(data16_a), .R2(data16_b), .R3(data16_c), .R4(data16_d),
 .S2(s2), .S1(s1), .OP(op), .REGOUT(regout), .clk(clk));
endmodule
A-5

Design Description

Example A-2 Adder16.v
module Adder16 (ain, bin, cin, sout, cout, clk);
/* 16-Bit Adder Module */
output [15:0] sout;
output cout;
input [15:0] ain, bin;
input cin, clk;

wire [15:0] sout_tmp, ain, bin;
wire cout_tmp;
reg [15:0] sout, ain_tmp, bin_tmp;
reg cout, cin_tmp;

always @(posedge clk) begin
 cout = cout_tmp;
 sout = sout_tmp;
 ain_tmp = ain;
 bin_tmp = bin;
 cin_tmp = cin;
end
 assign {cout_tmp,sout_tmp} = ain_tmp + bin_tmp + cin_tmp;
endmodule

Example A-3 CascadeMod.v
module CascadeMod (data1, data2, s, clk, cin, cout, comp_out, cnt, rst, start);
input [15:0] data1, data2;
output [15:0] s, cnt;
input clk, cin, rst, start;
output cout, comp_out;
wire co;

Adder8 u10 (.ain(data1[7:0]), .bin(data2[7:0]), .cin(cin), .clk(clk),
.sout(s[7:0]), .cout(co));
Adder8 u11 (.ain(data1[15:8]), .bin(data2[15:8]), .cin(co), .clk(clk),
.sout(s[15:8]), .cout(cout));
Comparator u12 (.ain(s), .bin(cnt), .cp_out(comp_out));

Counter u13 (.count(cnt), .start(start), .clk(clk), .rst(rst));
endmodule
A-6

Appendix A: Design Example

Example A-4 Adder8.v

module Adder8 (ain, bin, cin, sout, cout, clk);
/* 8-Bit Adder Module */
output [7:0] sout;
output cout;
input [7:0] ain, bin;
input cin, clk;

wire [7:0] sout_tmp, ain, bin;
wire cout_tmp;
reg [7:0] sout, ain_tmp, bin_tmp;
reg cout, cin_tmp;

always @(posedge clk) begin
 cout = cout_tmp;
 sout = sout_tmp;
 ain_tmp = ain;
 bin_tmp = bin;
 cin_tmp = cin;
end

assign {cout_tmp,sout_tmp} = ain_tmp + bin_tmp + cin_tmp;
endmodule
A-7

Design Description

Example A-5 Counter.v
module Counter (count, start, clk, rst);
/* Counter module */
 input clk;
 input rst;
 input start;
 output [15:0] count;

 wire clk;
 reg [15:0] count_N;
 reg [15:0] count;

 always @ (posedge clk or posedge rst)
 begin : counter_S
 if (rst) begin
 count = 0; // reset logic for the block
 end
 else begin
 count = count_N; // set specified registers of the block
 end
 end

 always @ (count or start)
 begin : counter_C
 count_N = count; // initialize outputs of the block
 if (start) count_N = 1; // user specified logic for the block
 else count_N = count + 1;
 end
endmodule

Example A-6 Comparator.v

module Comparator (cp_out, ain, bin);
/* Comparator for 2 integer values */
output cp_out;
input [15:0] ain, bin;
 assign cp_out = ain < bin;
endmodule
A-8

Appendix A: Design Example

Example A-7 Multiply8x8.v

module Multiply8x8 (op1, op2, res, clk);
/* 8-Bit multiplier */
input [7:0] op1, op2;
output [15:0] res;
input clk;

wire [15:0] res_tmp;
reg [15:0] res;

always @(posedge clk) begin
 res = res_tmp;
end
assign res_tmp = op1 * op2;
endmodule

Example A-8 Multiply16x16.v

module Multiply16x16 (op1, op2, res, clk);
/* 16-Bit multiplier */
input [15:0] op1, op2;
output [31:0] res;
input clk;

wire [31:0] res_tmp;
reg [31:0] res;

always @(posedge clk) begin
 res = res_tmp;
end
assign res_tmp = op1 * op2;
endmodule

Example A-9 def_macro.v

`define DATA 2’b00
`define REG 2’b01
`define STACKIN 2’b10
`define UPCOUT 2’b11
A-9

Design Description

Example A-10 MuxMod.v

module MuxMod (Y_IN, MUX_CNT, D, R, F, UPC);
‘include "def_macro.v"
 output [15:0] Y_IN;
 input [1:0] MUX_CNT;
 input [15:0] D, F, R, UPC;

 reg [15:0] Y_IN;

always @ (MUX_CNT or D or R or F or UPC) begin
 case (MUX_CNT)
 `DATA :
 Y_IN = D ;
 `REG :
 Y_IN = R ;
 `STACKIN :
 Y_IN = F ;
 `UPCOUT :
 Y_IN = UPC;
 endcase
end

endmodule
A-10

Appendix A: Design Example

Example A-11 PathSegment.v
module PathSegment (R1, R2, R3, R4, S2, S1, OP, REGOUT, clk);
/* Example for path segmentation */
input [15:0] R1, R2, R3, R4;
input S2, S1, clk;
input OP;
output [15:0] REGOUT;

reg [15:0] ADATA, BDATA;
reg [15:0] REGOUT;
reg MODE;

wire [15:0] product ;

always @(posedge clk)
begin : selector_block
 case(S1)
 1’b0: ADATA <= R1;
 1’b1: ADATA <= R2;
 default: ADATA <= 16’bx;
 endcase
 case(S2)
 1’b0: BDATA <= R3;
 1’b1: BDATA <= R4;
 default: ADATA <= 16’bx;
 endcase
end

/* Only Lower Byte gets multiplied */
// instantiate DW02_mult
DW02_mult #(8,8) U100 (.A(ADATA[7:0]), .B(BDATA[7:0]), .TC(1’b0),
.PRODUCT(product));

always @(posedge clk)
begin : alu_block
 case (OP)
 1’b0 : begin
 REGOUT <= ADATA + BDATA;
 end
 1’b1 : begin
 REGOUT <= product;
 end
 default : REGOUT <= 16’bx;
 endcase
end

endmodule
A-11

Design Description

Setup File

When running the design example, copy the project-specific setup
file in Example A-12 to your project working directory. This setup file
is written in the Tcl subset and can be used in both dctcl and dcsh
command languages. For more information about the Tcl subset,
see Using Tcl With Synopsys Tools and the Design Compiler
Command-Line Interface Guide.

Important:
If you are using dcsh command language and the setup file in
your home directory uses dcsh syntax instead of the Tcl subset,
this setup file will not work.

For details on the synthesis setup files, see “Setup Files” on
page 2-9.

Example A-12 .synopsys_dc.setup File

Define the target technology library, symbol library,
and link libraries
set target_library lsi_10k.db
set symbol_library lsi_10k.sdb
set link_library [concat $target_library "*"]
set search_path [concat $search_path ./src]
set designer "Your Name"
set company "Synopsys, Inc."
Define path directories for file locations
set source_path "./src/"
set script_path "./scr/"
set log_path "./log/"
set ddc_path "./ddc/"
set db_path "./db/"
set netlist_path "./netlist/"
A-12

Appendix A: Design Example

Default Constraints File

The file shown in Example A-13 (dctcl command language) and
Example A-14 (dctsh command language) defines the default
constraints for the design. In the scripts that follow, Design Compiler
reads this file first for each module. If the script for a module contains
additional constraints or constraint values different from those
defined in the default constraints file, Design Compiler uses the
module-specific constraints.
A-13

Default Constraints File

Example A-13 defaults.con (dctcl)

Define system clock period
set clk_period 20

Create real clock if clock port is found
if {[sizeof_collection [get_ports clk]] > 0} {
 set clk_name clk
 create_clock -period $clk_period clk
}

Create virtual clock if clock port is not found
if {[sizeof_collection [get_ports clk]] == 0} {
 set clk_name vclk
 create_clock -period $clk_period -name vclk
}

Apply default drive strengths and typical loads
for I/O ports
set_load 1.5 [all_outputs]
set_driving_cell -lib_cell IV [all_inputs]

If real clock, set infinite drive strength
if {[sizeof_collection [get_ports clk]] > 0} {
 set_drive 0 clk
}

Apply default timing constraints for modules
set_input_delay 1.2 [all_inputs] -clock $clk_name
set_output_delay 1.5 [all_outputs] -clock $clk_name
set_clock_uncertainty -setup 0.45 $clk_name

Set operating conditions
set_operating_conditions WCCOM

Turn on auto wire load selection
(library must support this feature)
set auto_wire_load_selection true
A-14

Appendix A: Design Example

Example A-14 defaults.con (dcsh)

/* Define system clock period*/
clk_period = 20

/* Create real clock if clock port is found */
if (find(port, clk) == {"clk"}) {
 clk_name = clk
 create_clock -period clk_period clk
}

/* Create virtual clock if clock port is not found */
if (find(port, clk) == {}) {
 clk_name = vclk
 create_clock -period clk_period -name vclk
}

/* Apply default drive strengths and typical loads
for I/O ports */
set_load 1.5 all_outputs()
set_driving_cell -lib_cell IV all_inputs()

/* If real clock, set infinite drive strength */
if (find(port, clk) == {"clk"}) {
 set_drive 0 clk
}

/* Apply default timing constraints for modules */
set_input_delay 1.2 all_inputs() -clock clk_name
set_output_delay 1.5 all_outputs() -clock clk_name
set_clock_uncertainty -setup 0.45 clk_name

/* Set operating conditions */
set_operating_conditions WCCOM

/* Turn on auto wire load selection (library must support
this feature) */
auto_wire_load_selection = true
A-15

Default Constraints File

Compile Scripts

Example A-15 through Example A-26 provide the dctcl scripts used
to compile the ChipLevel design. Example A-27 through
Example A-38 provide the dcsh scripts used to compile the
ChipLevel design.

The compile script for each module is named for that module to ease
recognition.The initial dctcl script files have the .tcl suffix. The initial
dcsh script files have the .scr suffix. Scripts generated by the
write_script command have the .wscr or .wtcl suffix, depending
on which command language generated them.

Example A-15 run.tcl

Initial compile with estimated constraints
source "${script_path}initial_compile.tcl"

current_design ChipLevel
if {[shell_is_in_xg_mode]==0}{
write -hier -o "${db_path}ChipLevel_init.db"
} else {
write -f ddc -hier -o "${ddc_path}ChipLevel_init.ddc"}

Characterize and write_script for all modules
source "${script_path}characterize.tcl"

Recompile all modules using write_script constraints
remove_design -all
source "${script_path}recompile.tcl"

current_design ChipLevel
if {[shell_is_in_xg_mode]==0}{
write -hier -out "${db_path}ChipLevel_final.db"
} else {
write -f ddc -hier -out "${ddc_path}ChipLevel_final.ddc"}
A-16

Appendix A: Design Example

Example A-16 initial_compile.tcl

Initial compile with estimated constraints
source "${script_path}read.tcl"

current_design ChipLevel
source "${script_path}defaults.con"

source "${script_path}adder16.tcl"
source "${script_path}cascademod.tcl"
source "${script_path}comp16.tcl"
source "${script_path}mult8.tcl"
source "${script_path}mult16.tcl"
source "${script_path}muxmod.tcl"
source "${script_path}pathseg.tcl"

Example A-17 adder16.tcl

Script file for constraining Adder16
set rpt_file "adder16.rpt"
set design "adder16"

current_design Adder16
source "${script_path}defaults.con"

Define design environment
set_load 2.2 sout
set_load 1.5 cout
set_driving_cell -lib_cell FD1 [all_inputs]
set_drive 0 $clk_name

Define design constraints
set_input_delay 1.35 -clock $clk_name {ain bin}
set_input_delay 3.5 -clock $clk_name cin
set_max_area 0

compile

if {[shell_is_in_xg_mode]==0}{
write -hier -o "${db_path}${design}.db"
} else {
write -f ddc -hier -o "${ddc_path}${design}.ddc"}

source "${script_path}report.tcl"
A-17

Compile Scripts

Example A-18 cascademod.tcl

Script file for constraining CascadeMod
Constraints are set at this level and then a
hierarchical compile approach is used

set rpt_file "cascademod.rpt"
set design "cascademod"

current_design CascadeMod
source "${script_path}defaults.con"

Define design environment
set_load 2.5 [all_outputs]
set_driving_cell -lib_cell FD1 [all_inputs]
set_drive 0 $clk_name

Define design constraints
set_input_delay 1.35 -clock $clk_name {data1 data2}
set_input_delay 3.5 -clock $clk_name cin
set_input_delay 4.5 -clock $clk_name {rst start}
set_output_delay 5.5 -clock $clk_name comp_out
set_max_area 0

Use compile-once, dont_touch approach for Comparator
set_dont_touch u12

compile

if {[shell_is_in_xg_mode]==0}{
write -hier -o "${db_path}${design}.db"
} else {
write -f ddc -hier -o "${ddc_path}${design}.ddc"}

source "${script_path}report.tcl"
A-18

Appendix A: Design Example

Example A-19 comp16.tcl

Script file for constraining Comparator
set rpt_file "comp16.rpt"
set design "comp16"

current_design Comparator
source "${script_path}defaults.con"

Define design environment
set_load 2.5 cp_out
set_driving_cell -lib_cell FD1 [all_inputs]

Override auto wire load selection
set_wire_load_model -name "05x05"
set_wire_load_mode enclosed

Define design constraints
set_input_delay 1.35 -clock $clk_name {ain bin}
set_output_delay 5.1 -clock $clk_name {cp_out}
set_max_area 0

compile

if {[shell_is_in_xg_mode]==0}{
write -hier -o "${db_path}${design}.db"
} else {
write -f ddc -hier -o "${ddc_path}${design}.ddc"}

source "${script_path}report.tcl"
A-19

Compile Scripts

Example A-20 mult8.tcl

Script file for constraining Multiply8x8
set rpt_file "mult8.rpt"
set design "mult8"

current_design Multiply8x8
source "${script_path}defaults.con"

Define design environment
set_load 2.2 res
set_driving_cell -lib_cell FD1P [all_inputs]
set_drive 0 $clk_name

Define design constraints
set_input_delay 1.35 -clock $clk_name {op1 op2}
set_max_area 0

compile

if {[shell_is_in_xg_mode]==0}{
write -hier -o "${db_path}${design}.db"
} else {
write -f ddc -hier -o "${ddc_path}${design}.ddc"}

source "${script_path}report.tcl"
A-20

Appendix A: Design Example

Example A-21 mult16.tcl

Script file for constraining Multiply16x16
set rpt_file "mult16.rpt"
set design "mult16"

current_design Multiply16x16
source "${script_path}defaults.con"

Define design environment
set_load 2.2 res
set_driving_cell -lib_cell FD1 [all_inputs]
set_drive 0 $clk_name

Define design constraints
set_input_delay 1.35 -clock $clk_name {op1 op2}
set_max_area 0

Define multicycle path for multiplier
set_multicycle_path 2 -from [all_inputs] \
 -to [all_registers -data_pins -edge_triggered]

Ungroup DesignWare parts
set designware_cells [get_cells \

-filter "@is_oper==true"]
if {[sizeof_collection $designware_cells] > 0} {
 set_ungroup $designware_cells true
}

compile

if {[shell_is_in_xg_mode]==0}{
write -hier -o "${db_path}${design}.db"
} else {
write -f ddc -hier -o "${ddc_path}${design}.ddc"}

source "${script_path}report.tcl"
report_timing_requirements -ignore \
 >> "${log_path}${rpt_file}"
A-21

Compile Scripts

Example A-22 muxmod.tcl

Script file for constraining MuxMod
set rpt_file "muxmod.rpt"
set design "muxmod"

current_design MuxMod
source "${script_path}defaults.con"

Define design environment
set_load 2.2 Y_IN
set_driving_cell -lib_cell FD1 [all_inputs]

Define design constraints
set_input_delay 1.35 -clock $clk_name {D R F UPC}
set_input_delay 2.35 -clock $clk_name MUX_CNT
set_output_delay 5.1 -clock $clk_name {Y_IN}
set_max_area 0

compile

if {[shell_is_in_xg_mode]==0}{
write -hier -o "${db_path}${design}.db"
} else {
write -f ddc -hier -o "${ddc_path}${design}.ddc"}

source "${script_path}report.tcl"
A-22

Appendix A: Design Example

Example A-23 pathseg.tcl

Script file for constraining path_segment
set rpt_file "pathseg.rpt"
set design "pathseg"

current_design PathSegment
source "${script_path}defaults.con"

Define design environment
set_load 2.5 [all_outputs]
set_driving_cell -lib_cell FD1 [all_inputs]
set_drive 0 $clk_name

Define design rules
set_max_fanout 6 {S1 S2}

Define design constraints
set_input_delay 2.2 -clock $clk_name {R1 R2}
set_input_delay 2.2 -clock $clk_name {R3 R4}
set_input_delay 5 -clock $clk_name {S2 S1 OP}
set_max_area 0

Perform path segmentation for multiplier
group -design mult -cell mult U100
set_input_delay 10 -clock $clk_name mult/product*
set_output_delay 5 -clock $clk_name mult/product*
set_multicycle_path 2 -to mult/product*

compile

if {[shell_is_in_xg_mode]==0}{
write -hier -o "${db_path}${design}.db"
} else {
write -f ddc -hier -o "${ddc_path}${design}.ddc"}

source "${script_path}report.tcl"
report_timing_requirements -ignore \
 >> "${log_path}${rpt_file}"
A-23

Compile Scripts

Example A-24 characterize.tcl

Characterize and write_script for all modules
current_design ChipLevel
characterize u1
current_design Adder16
write_script > "${script_path}adder16.wtcl"

current_design ChipLevel
characterize u2
current_design CascadeMod
write_script -format dctcl >
\ "${script_path}cascademod.wtcl"

current_design ChipLevel
characterize u3
current_design Comparator
write_script -format dctcl > "${script_path}comp16.wtcl"

current_design ChipLevel
characterize u4
current_design Multiply8x8
write_script -format dctcl > "${script_path}mult8.wtcl"

current_design ChipLevel
characterize u5
current_design Multiply16x16
write_script -format dctcl > "${script_path}mult16.wtcl"

current_design ChipLevel
characterize u6
current_design MuxMod
write_script -format dctcl > "${script_path}muxmod.wtcl"

current_design ChipLevel
characterize u7
current_design PathSegment

echo "current_design PathSegment" > \
"${script_path}pathseg.wtcl"

echo "group -design mult -cell mult U100" >> \
"${script_path}pathseg.wtcl"

write_script -format dctcl >> "${script_path}pathseg.wtcl"
A-24

Appendix A: Design Example

Example A-25 recompile.tcl

source "${script_path}read.tcl"

current_design ChipLevel
source "${script_path}defaults.con"

source "${script_path}adder16.wtcl"
compile
if {[shell_is_in_xg_mode]==0}{
write -hier -o "${db_path}adder16_wtcl.db"
} else {
write -f ddc -hier -o "${ddc_path}adder16_wtcl.ddc"}
set rpt_file adder16_wtcl.rpt
source "${script_path}report.tcl"

source "${script_path}cascademod.wtcl"
dont_touch u12
compile
if {[shell_is_in_xg_mode]==0}{
write -hier -o "${db_path}cascademod_wtcl.db"
} else {
write -f ddc -hier -o "${ddc_path}cascademod_wtcl.ddc"}
set rpt_file cascade_wtcl.rpt
source "${script_path}report.tcl"
A-25

Compile Scripts

source "${script_path}comp16.wtcl"
compile
if {[shell_is_in_xg_mode]==0}{
write -hier -o "${db_path}comp16_wtcl.db"
} else {
write -f ddc -hier -o "${ddc_path}comp16_wtcl.ddc"}
set rpt_file comp16_wtcl.rpt
source "${script_path}report.tcl"

source "${script_path}mult8.wtcl"
compile
if {[shell_is_in_xg_mode]==0}{
write -hier -o "${db_path}mult8_wtcl.db"
} else {
write -f ddc -hier -o "${ddc_path}mult8_wtcl.ddc"}
set rpt_file mult8_wtcl.rpt
source "${script_path}report.tcl"

source "${script_path}mult16.wtcl"
compile -ungroup_all
if {[shell_is_in_xg_mode]==0}{
write -hier -o "${db_path}mult16_wtcl.db"
} else {
write -f ddc -hier -o "${ddc_path}mult16_wtcl.ddc"}
set rpt_file mult16_wtcl.rpt
source "${script_path}report.tcl"
report_timing_requirements -ignore \>>
"${log_path}${rpt_file}"

source "${script_path}muxmod.wtcl"
compile
if {[shell_is_in_xg_mode]==0}{
write -hier -o "${db_path}muxmod_wtcl.db"
} else {
write -f ddc -hier -o "${ddc_path}muxmod_wtcl.ddc"}
set rpt_file muxmod_wtcl.rpt
source "${script_path}report.tcl"
A-26

Appendix A: Design Example

Example A-25 recompile.tcl (Continued)

source "${script_path}pathseg.wtcl"
compile
if {[shell_is_in_xg_mode]==0}{
write -hier -o "${db_path}pathseg_wtcl.db"
} else {
write -f ddc -hier -o "${ddc_path}pathseg_wtcl.ddc"}
set rpt_file pathseg_wtcl.rpt
source "${script_path}report.tcl"
report_timing_requirements -ignore \
 >> "${log_path}${rpt_file}"

Example A-26 report.tcl

This script file creates reports for all modules
set maxpaths 15

check_design > "${log_path}${rpt_file}"
report_area >> "${log_path}${rpt_file}"
report_design >> "${log_path}${rpt_file}"
report_cell >> "${log_path}${rpt_file}"
report_reference >> "${log_path}${rpt_file}"
report_port -verbose >> "${log_path}${rpt_file}"
report_net >> "${log_path}${rpt_file}"
report_compile_options >> "${log_path}${rpt_file}"
report_constraint -all_violators -verbose \
 >> "${log_path}${rpt_file}"
report_timing -path end >> "${log_path}${rpt_file}"
report_timing -max_path $maxpaths \
 >> "${log_path}${rpt_file}"
report_qor >> "${log_path}${rpt_file}"
A-27

Compile Scripts

Example A-27 run.scr

/* Initial compile with estimated constraints */
include script_path + initial_compile.scr

current_design ChipLevel
write -hierarchy -out db_path + ChipLevel_init.db

/* Characterize and write_script for all modules */
include script_path + characterize.scr

/* Recompile all modules using write_script constraints */
remove_design -all
include script_path + recompile.scr

current_design ChipLevel
write -hierarchy -out db_path + ChipLevel_final.db

Example A-28 initial_compile.scr

/* Initial compile with estimated constraints */
include script_path + read.scr

current_design ChipLevel
include script_path + defaults.con

include script_path + adder16.scr
include script_path + cascademod.scr
include script_path + comp16.scr
include script_path + mult8.scr
include script_path + mult16.scr
include script_path + muxmod.scr
include script_path + pathseg.scr
A-28

Appendix A: Design Example

Example A-29 adder16.scr

/* Script file for constraining Adder16 */
rpt_file = "adder16.rpt"
design = "adder16"

current_design Adder16
include script_path + defaults.con

/* Define design environment */
set_load 2.2 sout
set_load 1.5 cout
set_driving_cell -lib_cell FD1 all_inputs()
set_drive 0 clk_name

/* Define design constraints */
set_input_delay 1.35 -clock clk_name {ain, bin}
set_input_delay 3.5 -clock clk_name cin
set_max_area 0

compile
write -f db -hierarchy -o db_path + design + ".db"
include script_path + report.scr
A-29

Compile Scripts

Example A-30 cascademod.scr

/* Script file for constraining CascadeMod */
/* Constraints are set at this level and then a hierarchical
compile approach is used */

rpt_file = "cascademod.rpt"
design = "cascademod"

current_design CascadeMod
include script_path + defaults.con

/* Define design environment */
set_load 2.5 all_outputs()
set_driving_cell -lib_cell FD1 all_inputs()
set_drive 0 clk_name

/* Define design constraints */
set_input_delay 1.35 -clock clk_name {data1, data2}
set_input_delay 3.5 -clock clk_name cin
set_input_delay 4.5 -clock clk_name {rst, start}
set_output_delay 5.5 -clock clk_name comp_out
set_max_area 0

/* Use compile-once, dont_touch approach for Comparator */
set_dont_touch u12

compile
write -f db -hierarchy -o db_path + design + ".db"
include script_path + report.scr
A-30

Appendix A: Design Example

Example A-31 comp16.scr

/* Script file for constraining Comparator */
rpt_file = "comp16.rpt"
design = "comp16"

current_design Comparator
include script_path + defaults.con

/* Define design environment */
set_load 2.5 cp_out
set_driving_cell -lib_cell FD1 all_inputs()

/* Override auto wire load selection */
set_wire_load_model -name "05x05"
set_wire_load_mode enclosed

/* Define design constraints */
set_input_delay 1.35 -clock clk_name {ain, bin}
set_output_delay 5.1 -clock clk_name {cp_out}
set_max_area 0

compile
write -f db -hierarchy -o db_path + design + ".db"
include script_path + report.scr
A-31

Compile Scripts

Example A-32 mult8.scr

/* Script file for constraining Multiply8x8 */
rpt_file = "mult8.rpt"
design = "mult8"

current_design Multiply8x8
include script_path + defaults.con

/* Define design environment */
set_load 2.2 res
set_driving_cell -lib_cell FD1P all_inputs()
set_drive 0 clk_name

/* Define design constraints */
set_input_delay 1.35 -clock clk_name {op1, op2}
set_max_area 0

compile
write -f db -hierarchy -o db_path + design + ".db"
include script_path + report.scr
A-32

Appendix A: Design Example

Example A-33 mult16.scr

/* Script file for constraining Multiply16x16 */
rpt_file = "mult16.rpt"
design = "mult16"

current_design Multiply16x16
include script_path + defaults.con

/* Define design environment */
set_load 2.2 res
set_driving_cell -lib_cell FD1 all_inputs()
set_drive 0 clk_name

/* Define design constraints */
set_input_delay 1.35 -clock clk_name {op1, op2}
set_max_area 0

/* Define multicycle path for multiplier */
set_multicycle_path 2 -from all_inputs() \
 -to all_registers(-data_pins -edge_triggered)

/* Ungroup DesignWare parts */
designware_cells = \
 filter(find(cell),"@is_oper==true")
if (dc_shell_status != {}) {
 set_ungroup designware_cells true
}

compile
write -f db -hierarchy -o db_path + design + ".db"
include script_path + report.scr
report_timing_requirements -ignore \
 >> log_path + rpt_file
A-33

Compile Scripts

Example A-34 muxmod.scr

/* Script file for constraining MuxMod */
rpt_file = "muxmod.rpt"
design = "muxmod"

current_design MuxMod
include script_path + defaults.con

/* Define design environment */
set_load 2.2 Y_IN
set_driving_cell -lib_cell FD1 all_inputs()

/* Define design constraints */
set_input_delay 1.35 -clock clk_name {D, R, F, UPC}
set_input_delay 2.35 -clock clk_name MUX_CNT
set_output_delay 5.1 -clock clk_name {Y_IN}
set_max_area 0

compile
write -f db -hierarchy -o db_path + design + ".db"
include script_path + report.scr
A-34

Appendix A: Design Example

Example A-35 pathseg.scr

/* Script file for constraining path_segment */
rpt_file = "pathseg.rpt"
design = "pathseg"

current_design PathSegment
include script_path + defaults.con

/* Define design environment */
set_load 2.5 all_outputs()
set_driving_cell -lib_cell FD1 all_inputs()
set_drive 0 clk_name

/* Define design rules */
set_max_fanout 6 {S1 S2}

/* Define design constraints */
set_input_delay 2.2 -clock clk_name {R1 R2}
set_input_delay 2.2 -clock clk_name {R3 R4}
set_input_delay 5 -clock clk_name {S2 S1 OP}
set_max_area 0

/* Perform path segmentation for multiplier */
group -design mult -cell mult U100
set_input_delay 10 -clock clk_name mult/product*
set_output_delay 5 -clock clk_name mult/product*
set_multicycle_path 2 -to mult/product*

compile
write -f db -hierarchy -o db_path + design + ".db"
include script_path + report.scr
report_timing_requirements -ignore \
 >> log_path + rpt_file
A-35

Compile Scripts

Example A-36 characterize.scr

/* Characterize and write_script for all modules */
current_design ChipLevel
characterize u1
current_design Adder16
write_script > script_path + adder16.wscr

current_design ChipLevel
characterize u2
current_design CascadeMod
write_script > script_path + cascademod.wscr

current_design ChipLevel
characterize u3
current_design Comparator
write_script > script_path + comp16.wscr

current_design ChipLevel
characterize u4
current_design Multiply8x8
write_script > script_path + mult8.wscr

current_design ChipLevel
characterize u5
current_design Multiply16x16
write_script > script_path + mult16.wscr

current_design ChipLevel
characterize u6
current_design MuxMod
write_script > script_path + muxmod.wscr

current_design ChipLevel
characterize u7
current_design PathSegment
echo "current_design PathSegment" > \

script_path + pathseg.wscr
echo "group -design mult -cell mult U100" >> \

script_path + pathseg.wscr
write_script >> script_path + pathseg.wscr
A-36

Appendix A: Design Example

Example A-37 recompile.scr

include script_path + read.scr

current_design ChipLevel
include script_path + defaults.con

include script_path + adder16.wscr
compile
write -f db -hier -o db_path + adder16_wscr.db
rpt_file = adder16_wscr.rpt
include script_path + report.scr

include script_path + cascademod.wscr
dont_touch u12
compile
write -f db -hier -o db_path + cascademod_wscr.db
rpt_file = cascade_wscr.rpt
include script_path + report.scr

include script_path + comp16.wscr
compile
write -f db -hier -o db_path + comp16_wscr.db
rpt_file = comp16_wscr.rpt
include script_path + report.scr

include script_path + mult8.wscr
compile
write -f db -hier -o db_path + mult8_wscr.db
rpt_file = mult8_wscr.rpt
include script_path + report.scr

include script_path + mult16.wscr
compile -ungroup_all
write -f db -hier -o db_path + mult16_wscr.db
rpt_file = mult16_wscr.rpt
include script_path + report.scr
report_timing_requirements -ignore \
 >> log_path + rpt_file
include script_path + muxmod.wscr
compile
write -f db -hier -o db_path + muxmod_wscr.db
rpt_file = muxmod_wscr.rpt
include script_path + report.scr
A-37

Compile Scripts

Example A-37 recompile.scr (Continued)

include script_path + pathseg.wscr
compile
write -f db -hier -o db_path + pathseg_wscr.db
rpt_file = pathseg_wscr.rpt
include script_path + report.scr
report_timing_requirements -ignore \
 >> log_path + rpt_file

Example A-38 report.scr

/* This script file creates reports for all modules */
maxpaths = 15

check_design > log_path + rpt_file
report_area >> log_path + rpt_file
report_design >> log_path + rpt_file
report_cell >> log_path + rpt_file
report_reference >> log_path + rpt_file
report_port -verbose >> log_path + rpt_file
report_net >> log_path + rpt_file
report_compile_options >> log_path + rpt_file
report_constraint -all_violators -verbose \
 >> log_path + rpt_file
report_timing -path end >> log_path + rpt_file
report_timing -max_path maxpaths \
 >> log_path + rpt_file
report_qor >> log_path + rpt_file
A-38

Appendix A: Design Example

B
Basic Commands B

This appendix lists the basic dc_shell commands for synthesis and
provides a brief description for each command. The commands are
grouped in the following sections:

• Commands for Defining Design Rules

• Commands for Defining Design Environments

• Commands for Setting Design Constraints

• Commands for Analyzing and Resolving Design Problems

Within each section the commands are listed in alphabetical order.
B-1

Commands for Defining Design Rules

The commands that define design rules are

set_max_capacitance

Sets a maximum capacitance for the nets attached to the
specified ports or to all the nets in a design.

set_max_fanout

Sets the expected fanout load value for output ports.

set_max_transition

Sets a maximum transition time for the nets attached to the
specified ports or to all the nets in a design.

set_min_capacitance

Sets a minimum capacitance for the nets attached to the
specified ports or to all the nets in a design.

Commands for Defining Design Environments

The commands that define the design environment are

set_drive

Sets the drive value of input or inout ports. The set_drive
command is superseded by the set_driving_cell command.

set_driving_cell

Sets attributes on input or inout ports, specifying that a library cell
or library pin drives the ports. This command associates a library
pin with an input port so that delay calculators can accurately
model the drive capability of an external driver.
B-2

Appendix B: Basic Commands

set_fanout_load

Defines the external fanout load values on output ports.

set_load

Defines the external load values on input and output ports
and nets.

set_operating_conditions

Defines the operating conditions for the current design.

set_wire_load_model

Sets the wire load model for the current design or for the
specified ports. With this command, you can specify the wire load
model to use for the external net connected to the output port.

Commands for Setting Design Constraints

The basic commands that set design constraints are

create_clock

Creates a clock object and defines its waveform in the current
design.

set_clock_latency, set_clock_uncertainty,
set_propagated_clock, set_clock_transition

Sets clock attributes on clock objects or flip-flop clock pins.

set_input_delay

Sets input delay on pins or input ports relative to a clock signal.

set_max_area

Specifies the maximum area for the current design.
B-3

Commands for Setting Design Constraints

set_output_delay

Sets output delay on pins or output ports relative to a clock signal.

The advanced commands that set design constraints are

group_path

Groups a set of paths or endpoints for cost function calculation.
This command is used to create path groups, to add paths to
existing groups, or to change the weight of existing groups.

set_false_path

Marks paths between specified points as false. This command
eliminates the selected paths from timing analysis.

set_max_delay

Specifies a maximum delay target for selected paths in the
current design.

set_min_delay

Specifies a minimum delay target for selected paths in the current
design.

set_multicycle_path

Allows you to specify the time of a timing path to exceed the time
of one clock signal.
B-4

Appendix B: Basic Commands

Commands for Analyzing and Resolving Design
Problems

The commands for analyzing and resolving design problems are

all_connected

Lists all fanouts on a net.

all_registers

Lists sequential elements or pins in a design.

check_design

Checks for violations of the connection class rules; displays a list
of warning messages when violations exist.

check_timing

Checks the timing attributes placed on the current design.

derive_clocks

Automatically creates clocks for all clock sources in a design;
creates clock objects on ports and internal sources.

get_attribute

Reports the value of the specified attribute.

link

Locates the reference for each cell in the design.

report_area

Provides area information and statistics on the current design.

report_attribute

Lists the attributes and their values for the selected object. An
object can be a cell, net, pin, port, instance, or design.
B-5

Commands for Analyzing and Resolving Design Problems

report_cell

Lists the cells in the current design and their cell attributes.

report_clock

Displays clock-related information on the current design.

report_constraint

Lists the constraints on the current design and their cost, weight,
and weighted cost.

report_delay_calculation

Reports the details of a delay arc calculation.

report_design

Displays the operating conditions, wire load model and mode,
timing ranges, internal input and output, and disabled timing arcs
defined for the current design.

report_hierarchy

Lists the children of the current design.

report_net

Displays net information for the design of the current instance, if
set; otherwise, displays net information for the current design.

report_path_group

Lists all timing path groups in the current design.

report_port

Lists information about ports in the current design.

report_qor

Displays information about the quality of results and other
statistics for the current design.
B-6

Appendix B: Basic Commands

report_resources

Displays information about the resource implementation.

report_timing

Lists timing information for the current design.

report_timing_requirements

Lists timing path requirements and related information.

report_transitive_fanin

Lists the fanin logic for selected pins, nets, or ports of the current
instance.

report_transitive_fanout

Lists the fanout logic for selected pins, nets, or ports of the
current instance.
B-7

Commands for Analyzing and Resolving Design Problems

B-8

Appendix B: Basic Commands

C
Predefined Attributes C

This appendix contains tables that list the Design Compiler
predefined attributes for each object type.

Table C-1 Clock Attributes

Attribute name Value

dont_touch_network {true, false}

fall_delay float

fix_hold {true, false}

max_time_borrow float

minus_uncertainty float

period float

plus_uncertainty float

propagated_clock {true, false}
C-1

rise_delay float

Table C-2 Design Attributes

Attribute name Value

actual_max_net_capacitance float

actual_min_net_capacitance float

boundary_optimization {true, false}

default_flip_flop_type internally generated string

default_flip_flop_type_exact library_cell_name

default_latch_type library_cell_name

design_type {equation, fsm, pla, netlist}

dont_touch {true, false}

dont_touch_network {true, false}

driven_by_logic_one {true, false}

driven_by_logic_zero {true, false}

driving_cell_dont_scale string

driving_cell_fall string

driving_cell_from_pin_fall string

driving_cell_from_pin_rise string

driving_cell_library_fall string

driving_cell_library_rise string

driving_cell_multiplier float

Table C-1 Clock Attributes (Continued)

Attribute name Value
C-2

Appendix C: Predefined Attributes

driving_cell_pin_fall string

driving_cell_pin_rise string

driving_cell_rise string

fall_drive float

fanout_load float

flatten {true, false}

flatten_effort {true, false}

flatten_minimize {true, false}

flatten_phase {true, false}

flip_flop_type internally generated string

flip_flop_type_exact library_cell_name

is_black_box {true, false}

is_combinational {true, false}

is_hierarchical {true, false}

is_mapped {true, false}

is_sequential {true, false}

is_test_circuitry {true, false}

is_unmapped {true, false}

latch_type internally generated string

latch_type_exact library_cell_name

load float

Table C-2 Design Attributes (Continued)

Attribute name Value
C-3

local_link_library design_or_lib_file_name

max_capacitance float

max_fanout float

max_time_borrow float

max_transition float

min_capacitance float

minus_uncertainty float

output_not_used {true, false}

pad_location (XNF only) string

part (XNF only) string

plus_uncertainty float

port_direction {in, inout, out, unknown}

port_is_pad {true, false}

ref_name reference_name

rise_drive float

structure {true, false}

ungroup {true, false}

wired_logic_disable {true, false}

xnf_init string

xnf_loc string

Table C-2 Design Attributes (Continued)

Attribute name Value
C-4

Appendix C: Predefined Attributes

Table C-3 Library Attributes

Attribute name Value

default_values float

k_process_values float

k_temp_values float

k_volt_values float

nom_process float

nom_temperature float

nom_voltage float

Table C-4 Library Cell Attributes

Attribute name Value

area float

dont_touch {true, false}

dont_use {true, false}

preferred {true, false}

Table C-5 Net Attributes

Attribute name Value

ba_net_resistance float

dont_touch {true, false}

load float

subtract_pin_load {true, false}

wired_and {true, false}
C-5

wired_or {true, false}

Table C-6 Pin Attributes

Attribute name Value

disable_timing {true, false}

max_time_borrow float

pin_direction {in, inout, out, unknown}

Table C-7 Reference Attributes

Attribute name Value

dont_touch {true, false}

is_black_box {true, false}

is_combinational {true, false}

is_hierarchical {true, false}

is_mapped {true, false}

is_sequential {true, false}

is_unmapped {true, false}

ungroup {true, false}

Table C-5 Net Attributes (Continued)

Attribute name Value
C-6

Appendix C: Predefined Attributes

Glossary GL

annotation
A piece of information attached to an object in the design, such as a
capacitance value attached to a net; the process of attaching such a
piece of information to an object in the design.

back-annotate
To update a circuit design by using extraction and other
post-processing information that reflects implementation-dependent
characteristics of the design, such as pin selection, component
location, or parasitic electrical characteristics. Back-annotation
allows a more accurate timing analysis of the final circuit. The data
is generated by another tool after layout and passed to the
synthesis environment. For example, the design database might be
updated with actual interconnect delays; these delays are
calculated after placement and routing—after exact interconnect
lengths are known.

cell
See instance.

clock
A source of timed pulses with a periodic behavior. A clock
synchronizes the propagation of data signals by controlling
sequential elements, such as flip-flops and registers, in a digital
circuit. You define clocks with the create_clock command.
GL-1

Clocks you create by using the create_clock command ignore
delay effects of the clock network. Therefore, for accurate timing
analysis, you describe the clock network in terms of its latency and
skew. See also clock latency and clock skew.

clock gating
The control of a clock signal by logic (other than inverters or
buffers), either to shut down the clock signal at selected times or to
modify the clock pulse characteristics.

clock latency
The amount of time that a clock signal takes to be propagated from
the clock source to a specific point in the design. Clock latency is
the sum of source latency and network latency.

Source latency is the propagation time from the actual clock origin
to the clock definition point in the design. Network latency is the
propagation time from the clock definition point in the design to the
clock pin of the first register.

You use the set_clock_latency command to specify clock
latency.

clock skew
The maximum difference between the arrival of clock signals at
registers in one clock domain or between clock domains. Clock
skew is also known as clock uncertainty. You use the
set_clock_uncertainty command to specify the skew
characteristics of one or more clock networks.

clock source
The pin or port where the clock waveform is applied to the design.
The clock signal reaches the registers in the transitive fanout of all
its sources. A clock can have multiple sources.

You use the create_clock command with the source_object
option to specify clock sources.
GL-2

clock tree
The combinational logic between a clock source and registers in the
transitive fanout of that source. Clock trees, also known as clock
networks, are synthesized by vendors based on the physical
placement data at registers in one clock domain or between clock
domains.

clock uncertainty
See clock skew.

core
A predesigned block of logic employed as a building block for ASIC
designs.

critical path
The path through a circuit with the longest delay. The speed of a
circuit depends on the slowest register-to-register delay. The clock
period cannot be shorter than this delay or the signal will not reach
the next register in time to be clocked.

datapath
A logic circuit in which data signals are manipulated using
arithmetic operators such as adders, multipliers, shifters, and
comparators.

current design
The active design (the design being worked on). Most commands
are specific to the current design, that is, they operate within the
context of the current design. You specify the current design with
the current_design command.

current instance
The instance in a design hierarchy on which instance-specific
commands operate by default. You specify the current instance with
the current_instance command.
GL-3

design constraints
The designer’s specification of design performance goals, that is,
the timing and environmental restrictions under which synthesis is
to be performed. Design Compiler uses these constraints—for
example, low power, small area, high-speed, or minimal cost—to
direct the optimization of a design to meet area and timing goals.

There are two categories of design constraints: design rule
constraints and design optimization constraints.

• Design rule constraints are supplied in the technology library. For
proper functioning of the fabricated circuit, they must not be
violated.

• Design optimization constraints define timing and area
optimization goals.

Design Compiler optimizes the synthesis of the design in
accordance with both sets of constraints; however, design rule
constraints have higher priority.

false path
A path that you do not want Design Compiler to consider during
timing analysis. An example of such a path is one between two
multiplexed blocks that are never enabled at the same time, that is,
a path that cannot propagate a signal.

You use the set_false_path command to disable timing-based
synthesis on a path-by-path basis. The command removes timing
constraints on the specified path.

fanin
The pins driving an endpoint pin, port, or net (also called sink). A
pin is considered to be in the fanin of a sink if there is a timing path
through combinational logic from the pin to the sink. Fanin tracing
starts at the clock pins of registers or valid startpoints. Fanin is also
known as transitive fanin.
GL-4

You use the report_transitive_fanin command to report the
fanin of a specified sink pin, port, or net.

fanout
The pins driven by a source pin, port, or net. A pin is considered to
be in the fanout of a source if there is a timing path through
combinational logic from the source to that pin or port. Fanout
tracing stops at the data pin of a register or at valid endpoints.
Fanout is also known as transitive fanout or timing fanout.

You use the report_transitive_fanout command to report
the fanout of a specified source pin, port, or net.

fanout load
A unitless value that represents a numerical contribution to the total
fanout. Fanout load is not the same as load, which is a capacitance
value.

Design Compiler models fanout restrictions by associating a
fanout_load attribute with each input pin and a max_fanout
attribute with each output (driving) pin on a cell and ensures that the
sum of fanout loads is less than the max_fanout value.

flatten
To convert combinational logic paths of the design to a two-level,
sum-of-products representation. During flattening, Design Compiler
removes all intermediate terms, and therefore all associated logic
structure, from a design. Flattening is constraint based.

You use the set_flatten command to control the flattening of
your design. Design Compiler does not perform flattening by
default.

forward-annotate
To transfer data from the synthesis environment to other tools used
later in the design flow. For example, delay and constraints data in
Standard Delay Format (SDF) might be transferred from the
synthesis environment to guide place and route tools.
GL-5

generated clock
A clock signal that is generated internally by the integrated circuit
itself; a clock that does not come directly from an external source.
An example of a generated clock is a divide-by-2 clock generated
from the system clock. You define a generated clock with the
create_generated_clock command.

hold time
The time that a signal on the data pin must remain stable after the
active edge of the clock. The hold time creates a minimum delay
requirement for paths leading to the data pin of the cell.

You calculate the hold time by using the formula

hold = max clock delay - min data delay

ideal clock
A clock that is considered to have no delay as it propagates through
the clock network. The ideal clock type is the default for Design
Compiler. You can override the default behavior (using the
set_clock_latency and set_propagated_clock
commands) to obtain nonzero clock network delay and specify
information about the clock network delays.

ideal net
Nets that are assigned ideal timing conditions—that is, latency,
transition time, and capacitance are assigned a value of zero. Such
nets are exempt from timing updates, delay optimization, and
design rule fixing. Defining certain high fanout nets that you intend
to synthesize separately (such as scan-enable and reset nets) as
ideal nets can reduce runtime.

You use the set_ideal_net command to specify nets as ideal
nets.
GL-6

input delay
A constraint that specifies the minimum or maximum amount of
delay from a clock edge to the arrival of a signal at a specified input
port.

You use the set_input_delay command to set the input delay on
a pin or input port relative to a specified clock signal.

instance
An occurrence in a circuit of a reference (a library component or
design) loaded in memory; each instance has a unique name. A
design can contain multiple instances; each instance points to the
same reference but has a unique name to distinguish it from other
instances. An instance is also known as a cell.

leaf cell
A fundamental unit of logic design. A leaf cell cannot be broken into
smaller logic units. Examples are NAND gates and inverters.

link library
A technology library that Design Compiler uses to resolve cell
references. Link libraries can contain technology libraries and
design files. Link libraries also contain the descriptions of cells
(library cells as well as subdesigns) in a mapped netlist.

Link libraries include both local link libraries
(local_link_library attribute) and system link libraries
(link_library variable).

multicycle path
A path for which data takes more than one clock cycle to propagate
from the startpoint to the endpoint.

You use the set_multicycle_path command to specify the
number of clock cycles Design Compiler should use to determine
when data is required at a particular endpoint.
GL-7

netlist
A file in ASCII or binary format that describes a circuit schematic—
the netlist contains a list of circuit elements and interconnections in
a design. Netlist transfer is the most common way of moving design
information from one design system or tool to another.

operating conditions
The process, voltage, and temperature ranges a design encounters.
Design Compiler optimizes your design according to an operating
point on the process, voltage, and temperature curves and scales
cell and wire delays according to your operating conditions.

By default, operating conditions are specfied in a technology library
in an operating_conditions group.

optimization
The step in the logic synthesis process in which Design Compiler
attempts to implement a combination of technology library cells that
best meets the functional, timing, and area requirements of the
design.

output delay
A constraint that specifies the minimum or maximum amount of
delay from an output port to the sequential element that captures
data from the output port. This constraint establishes the times at
which signals must be available at the output port to meet the setup
and hold requirements of the sequential element.

You use the set_output_delay command to set the output delay
on a pin or output port relative to a specified clock signal.

pad cell
A special cell at the chip boundaries that allows connection or
communication with integrated circuits outside the chip.
GL-8

path group
A group of related paths, grouped either implicitly by the
create_clock command or explicitly by the group_path
command. By default, paths whose endpoints are clocked by the
same clock are assigned to the same path group.

pin
A part of a cell that provides for input and output connections. Pins
can be bidirectional. The ports of a subdesign are pins within the
parent design.

propagated clock
A clock that incurs delay through the clock network. Propagated
clocks are used to determine clock latency at register clock pins.
Registers clocked by a propagated clock have edge times skewed
by the path delay from the clock source to the register clock pin.

You use the set_propagated_clock command to specify that
clock latency be propagated through the clock network.

real clock
A clock that has a source, meaning its waveform is applied to pins
or ports in the design. You create a real clock by using a
create_clock command and including a source list of ports or
pins. Real clocks can be either ideal or propagated.

reference
A library component or design that can be used as an element in
building a larger circuit. The structure of the reference may be a
simple logic gate or a more complex design (RAM core or CPU). A
design can contain multiple occurrences of a reference; each
occurrence is an instance. See also instance.

RTL
RTL, or register transfer level, is a register-level description of a
digital electronic circuit. In a digital circuit, registers store
intermediate information between clock cycles; thus, RTL describes
the intermediate information that is stored, where it is stored within
GL-9

the design, and how it is transferred through the design. RTL
models circuit behavior at the level of data flow between a set of
registers. This level of abstraction typically contains little timing
information, except for references to a set of clock edges and
features.

setup time
The time that a signal on the data pin must remain stable before the
active edge of the clock. The setup time creates a maximum delay
requirement for paths leading to the data pin of a cell.

You calculate the setup time by using the formula

setup = max data delay - min clock delay

slack
A value that represents the difference between the actual arrival
time and the required arrival time of data at the path endpoint in a
mapped design. Slack values can be positive, negative, or zero.

A positive slack value represents the amount by which the delay of a
path can be increased without violating any timing constraints. A
negative slack value represents the amount by which the delay of a
path must be reduced to meet its timing constraints.

structuring
To add intermediate variables and logic structure to a design, which
can result in reduced design area. Structuring is constraint based. It
is best applied to noncritical timing paths.

By default, Design Compiler structures your design. You use the
set_structure command and the
compile_new_boolean_structure variable to control the
structuring of your design.
GL-10

synthesis
A software process that generates an optimized gate-level netlist,
which is based on a technology library, from an input IC design.
Synthesis includes reading the HDL source code and optimizing the
design from that description.

symbol library
A library that contains the schematic symbols for all cells in a
particular ASIC library. Design Compiler uses symbol libraries to
generate the design schematic. You can use Design Vision to view
the design schematic.

target library
The technology library to which Design Compiler maps during
optimization. Target libraries contain the cells used to generate the
netlist and definitions for the design’s operating conditions.

technology library
A library of ASIC cells that are available to Design Compiler during
the synthesis process. A technology library can contain area,
timing, power, and functional information on each ASIC cell. The
technology of each library is specific to a particular ASIC vendor.

timing exception
An exception to the default (single-cycle) timing behavior assumed
by Design Compiler. For Design Compiler to analyze a circuit
correctly, you must specify each timing path in the design that does
not conform to the default behavior. Examples of timing exceptions
include false paths, multicycle paths, and paths that require a
specific minimum or maximum delay time different from the default
calculated time.

timing path
A point-to-point sequence that dictates data propagation through a
design. Data is launched by a clock edge at a startpoint, propagated
through combinational logic elements, and captured at an endpoint
GL-11

by another clock edge. The startpoint of a timing path is an input
port or clock pin of a sequential element. The endpoint of a timing
path is an output port or a data pin of a sequential element.

transition delay
A timing delay caused by the time it takes the driving pin to change
voltage state.

ungroup
To remove hierarchy levels in a design. Ungrouping merges
subdesigns of a given level of the hierarchy into the parent cell or
design.

You use the ungroup command or the compile command with
the auto_ungroup option to ungroup designs.

uniquify
To resolve multiple cell references to the same design in memory.

The uniquify process creates unique design copies with unique
design names for each instantiated cell that references the original
design.

virtual clock
A clock that exists in the system but is not part of the block. A virtual
clock does not clock any sequential devices within the current
design and is not associated with a pin or port. You use a virtual
clock as a reference for specifying input and output delays relative
to a clock outside the block.

You use the create_clock command without a list of associated
pins or ports to create a virtual clock.

wire load model
An estimate of a net’s RC parasitics based on the net’s fanout, in the
absence of placement and routing information. The estimated
capacitance and resistance are used to calculate the delay of nets.
After placement and routing, you should back-annotate the design
with detailed information on the net delay.
GL-12

The wire load model is shipped with the technology library; vendors
develop the wire load model based on statistical information specific
to the vendor’s process. You can also custom-generate the model
based on back-annotation. The model includes coefficients for area,
capacitance, and resistance per unit length, and a fanout-to-length
table for estimating net lengths (the number of fanouts determines a
nominal length).
GL-13

GL-14

Index

A
accessing help 2-13
all_clocks command 5-25
all_connected command 5-48
all_fanin command 8-52
all_outputs command 5-24
all_registers command 5-25
analyze command 2-21, 5-10, 5-14
analyzing design 9-7
architectural optimization 8-2
area constraints

command to set 7-26
async_set_reset compiler directive 3-16
attribute values

saving 5-66
setting 5-63
viewing 5-65

attributes
creating 5-66
defined 5-62
design rule 7-3
getting descriptions 5-63
listing 5-40
removing 5-40, 5-66, 7-5
search order 5-65, 5-66
viewing 9-25

attributes, list of

auto_wire_load_selection 6-12
cell_degradation 7-3
clock C-1
connection_class 7-3
default_wire_load 6-11
default_wire_load_mode 6-12
design C-2
dont_touch 8-28, 9-14, 9-24, 9-26
fanout_load 7-5
is_black_box 9-12
is_hierarchical 9-12
is_unmapped 9-11
library C-5
library cell C-5
max_area 7-26
max_capacitance 7-8, 9-25
max_fanout 7-5, 9-25
max_transition 7-4, 9-25
net C-5
pin C-6
reference C-6
signal_type 9-13

auto_ungroup_preserve_constraints variable
5-43, 8-47

auto_wire_load_selection attribute 6-12
automatic ungrouping 5-40

using compile 5-40
using compile_ultra 8-45
IN-1

B
balance_buffer command 8-51
Boolean optimization

defined 8-57
enabling 8-57

bottom-up compile 8-12
advantages 8-12
directory structure

figure 3-4
disadvantages 8-12
process 8-13
when to use 8-12

boundary optimization 8-59
breaking, feedback loop 9-15
buffers

extra 9-25
guidelines for working with 9-22
hanging 9-26
insertion process 9-16
interblock 9-14
missing 9-22

buses
creating 5-47
deleting 5-47

C
capacitance

calculating 7-8
checking 9-24
controlling 7-8
cost calculation 8-33
removing attribute 7-9

capacitive load
setting 6-17

case sensitive
setting 5-20

case statement 3-24
latch inference 3-25
multiplexer inference 3-15

cell count-based auto-ungrouping 5-41

cell degradation cost 8-34
cell delays, finding source of 9-9
cell_degradation attribute 7-3
cells

black box, identifying 9-12
creating 5-47
deleting 5-47
grouping

from different subdesigns 5-46
from same subdesign 5-32

hierarchical
defined 5-5
identifying 9-12

leaf 5-5
library, specifying 4-12
listing 5-24
merging

hierarchy 5-46
reporting 5-24
unmapped, identifying 9-11

change_link command 5-22
change_names command 5-37, 5-57
check_design command 9-2
checkpointing

automatically 9-6
defined 9-6

clock attributes C-1
clock network delay

default 7-13
reporting 7-14
setting margin of error 7-13
specifying 7-13

clock uncertainty
setting 7-10

clocks
creating 7-10
defining 7-11
ideal 7-13
listing 5-25
multiple 7-12
removing 7-13
IN-2

reporting 5-25, 7-13
See also, clock network delay
specifying

network delay 7-13
period 7-11
waveform 7-11

combinational logic
partitioning 3-5
specifying delay requirements 7-16

command
analyzing design problems B-5
design constraints

setting B-3
design environment B-2
design rules B-2
resolving design problems B-5

command language
dctcl and dcsh 2-8

command log files 2-15
command script 2-16
command_log_file variable 2-15
commands

all_clocks 5-25
all_connected 5-48
all_fanin 8-52
all_outputs 5-24
all_registers 5-25
analyze 2-21, 5-10, 5-14
analyzing design 9-7
balance_buffer 8-51
change_link 5-22
change_names 5-37, 5-57
check_design 9-2
compile -auto_ungroup area 5-40
compile -auto_ungroup delay 5-40
compile_auto_ungroup delay 8-54
compile_ultra 8-43, 8-45
connect_net 5-47
copy_design 5-29
create_bus 5-47
create_cell 5-47
create_clock 7-10, 7-11, 8-35

create_design 5-28
create_multibit 3-18
create_net 5-44, 5-47
create_port 5-45, 5-47
current_design 5-17, 5-18
current_instance 5-25
define_name_rules -map 5-58
disconnect_net 5-47
elaborate 2-21, 5-10, 5-14
exit 2-13
filter 9-11, 9-12
find 9-12
get_attribute 5-65, 9-23, 9-25
get_cells 9-11, 9-12
get_designs 9-12
get_license 2-17
get_references 5-7
group 5-32, 8-52
group_path 8-35, 8-48
license_users 2-17
list 6-12
list_designs 5-16
list_duplicate_designs 5-16
list_instances 5-24
list_libs 4-11, 6-9
load_of 9-24
quit 2-13
read_db 5-15
read_ddc 5-15
read_file 2-21, 4-11, 5-10, 5-14, 5-17
read_lib 4-11
read_milkyway 5-14
read_verilog 2-21
read_vhdl 2-21
remove_attribute 7-5, 7-8, 7-9
remove_bus 5-47
remove_cell 5-47
remove_clock 7-13
remove_constraint 7-27
remove_design 4-16, 5-52
remove_input_delay 7-14
remove_license 2-17
IN-3

remove_multibit 3-18
remove_net 5-47
remove_output_delay 7-14
remove_port 5-47
remove_wire_load_model 6-13
rename_design 5-30
report_attribute 5-65
report_auto_ungroup 5-41
report_cell 9-25
report_clock 5-25, 7-13
report_compile_options 8-5
report_constraint 9-16
report_delay_calculation 9-9
report_design 6-5, 8-30
report_hierarchy 5-31
report_lib 6-4, 6-9, 6-17
report_net 5-25
report_path_group 8-35
report_port 5-24, 7-14
report_reference 5-24
report_resources 8-73
report_timing 6-13, 9-15
report_timing_requirements 7-17, 7-18
reset_path 7-19, 7-24
set_clock_uncertainty 7-10
set_cost_priority 8-32
set_critical_range 8-49
set_disable_timing 9-13
set_dont_touch 8-25, 8-28
set_drive 6-14, 6-15, 6-16
set_driving_cell 6-13, 6-14, 6-16
set_false_path 7-18
set_fanout_load 6-18, 7-7
set_flatten 8-4
set_input_delay 7-11, 7-14
set_input_transition 6-14
set_load 6-17
set_max_area 7-26
set_max_delay 7-16, 7-19
set_max_fanout 7-7
set_max_transition 7-4
set_min_delay 7-16, 7-19

set_multicycle_path 7-22
set_output_delay 7-11, 7-14
set_resistance 9-15
set_structure 8-3, 8-57
set_ultra_optimization 8-76
set_ungroup 5-39, 8-60
set_wire_load 6-7, 6-12
translate 5-50, 5-51
ungroup 5-36, 8-27
uniquify 8-22
write 5-54
write_lib 4-16
write_milkyway 5-55
write_script 5-66

common base period, defined 7-12
compile

default 8-40
defined 2-2
directory structure

bottom-up 3-4
top-down 3-3

high effort 8-54
incremental 8-55

compile -auto_ungroup area 5-40
compile -auto_ungroup delay 5-40
compile command

automatically uniquified designs 8-21
default behavior 8-40
disabling design rule cost function 8-32
disabling optimization cost function 8-32

compile cost function 8-31
compile log

customizing 9-3
compile option

list of 8-5
compile script A-16

adder16 A-17, A-29
cascademod A-18, A-30
comparator A-19, A-31
multiply 8x8 A-20, A-32
multiply16x16 A-21, A-33
IN-4

muxmod A-22, A-34
pathseg A-23, A-35

compile scripts
design example A-16

compile strategies 8-7
compile strategy

bottom-up 8-12
defined 2-23
mixed 8-19
top-down 8-9

compile_assume_fully_decoded_three_state_
busses variable 5-52

compile_auto_ungroup_area_num_cells
variable 5-41, 5-43

compile_auto_ungroup_count_leaf_cells
variable 5-41, 5-42, 8-46

compile_auto_ungroup_delay_num_cells
variable 5-42, 5-43, 8-46

compile_auto_ungroup_override_wlm 5-43,
8-46

compile_auto_ungroup_override_wlm variable
5-43, 8-46

compile_fix_cell_degradation variable 8-34
compile_new_boolean_structure variable 8-57
compile_ultra command 8-43

automatic ungrouping 8-45
compiler directives

async_set_reset 3-16
enum 3-21
full_case 3-25
implementation 3-19
infer_multibit 3-18
infer_mux 3-15
label 3-19
map_to_module 3-19, 3-32
ops 3-19
return_port_name 3-32
state_vector 3-21
sync_set_reset 3-17

compiler_log_format variable 9-4
connect_net command 5-47

connection_class attribute 7-3
constants

global
defining 3-26

constraints
area 7-26
defining 7-1
design rule

setting 7-3
removing 7-27
simplifying 3-7
timing 7-10

constraints file
design example A-13

copy_design command 5-29
cost calculation

capacitance 8-33
fanout 8-32
maximum delay 8-34
minimum delay 8-37
minimum porosity 8-39
transition time 8-32

cost function 8-31
constraints

report_constraint command 9-18
design rule 8-31
optimization 8-31

create_bus command 5-47
create_cell command 5-47
create_clock command 7-10, 7-13

and path groups 8-35
clock, defining 7-11
default behavior 7-11

create_design command 5-28
create_multibit command 3-18
create_net command 5-44, 5-47
create_port command 5-45, 5-47
critical negative slack, defined 8-36
critical range, defined 8-36
critical-path resynthesis 8-54
current design
IN-5

defined 5-4
displaying 5-17

current instance 5-5
changing 5-25
default 5-25
defined 5-25
displaying 5-26
resetting 5-26

current_design
command 5-17
variable 5-17

current_design runtime 5-18
current_instance

command 5-25
variable 5-26

D
dangling logic, preserving 9-14
data management 3-2
data organization 3-3
datapath extraction

DC Ultra 8-63
datapath optimization

DC Ultra 8-61
three methods 8-67

.db format 5-8
reading 5-15
saving 5-56

DB mode 2-7
starting Design Compiler 2-11

DC Expert
defined 1-5

DC FPGA
defined 1-8

DC Ultra
defined 1-6

DC Ultra datapath optimization 8-61
bit truncation 8-65
commands and variables, specific to 8-76
datapath extraction 8-63

datapath report 8-73
licenses required 8-62, 8-70
methodology flow 8-70
three optimization methods 8-67

dc_shell
exiting 2-12
session example 2-25

DC-Expert license 8-54
dcsh command language 2-8
dctcl command language 2-8
.ddc format 5-8

reading 5-15
saving 5-55

default compile 8-40
default_wire_load attribute 6-11
default_wire_load_mode attribute 6-12
define_name_rules -map command 5-58
definitions

attribute 5-62
Boolean optimization 8-57
checkpointing 9-6
common base period 7-12
compiler 2-2
critical range 8-36
current design 5-4
current instance 5-5, 5-25
design 5-3
flat design 5-3
hierarchical cell 5-5
hierarchical design 5-3
leaf cell 5-5
negative slack

critical 8-36
total 8-36
worst 8-34

nets 5-6
networks 5-6
optimization 2-2
parent design 5-3
pin 5-6
ports 5-5
IN-6

subdesign 5-3
synthesis 2-2

delay calculation, reporting 9-9
delay cost, calculating

maximum 8-34
minimum 8-37

delay-based auto-ungrouping 5-42
delays

setting 7-11, 7-14
design

data management 3-2
in memory 5-1
organization 3-3

design attributes C-2
Design Compiler

description 1-1
design flow 1-2
exiting 2-12
family of products 1-4
help 2-13
interfaces 2-8
modes 2-7
session example 2-25
starting 2-11

Design Compiler family
DC Expert 1-5
DC FPGA 1-8
DC Ultra 1-6
Design Vision 1-8
DesignWare 1-7
DFT Compiler 1-7
HDL Compiler 1-6
Module Compiler 1-7
Power Compiler 1-7

design constraints
commands

setting B-3
design database formats 5-8

converting from .db to .ddc 5-57
.db 5-8
.ddc 5-8

Milkyway 5-9
design environment

commands B-2
defining 6-3
See also, operating conditions

design example
block diagram A-2
compile scripts A-16
compile strategies for A-3
constraints file A-13
hierarchy A-3
setup file A-12

design exploration 8-40
basic flow 2-18
invoking 8-40

design files
reading 2-21, 5-10, 5-14
writing 5-53

design flow 1-2
high-level

figure 2-5
synthesis

design exploration 2-18
design implementation 2-18

design function
target libraries 4-4

design hierarchy
changing 5-31
displaying 5-31
preserved timing constraints 5-46
removing levels 5-35
See also, hierarchy

design implementation 8-41
basic flow 2-18
techniques for 8-41

design objects
accessing 5-24
adding 5-28
defined 5-4
listing

clocks 5-25
instances 5-24
IN-7

nets 5-25
ports 5-24
references 5-24
registers 5-25

specifying
absolute path 5-27
relative path 5-25

design problems
commands

analyzing B-5
resolving B-5

design reuse
partitioning 3-5

design rule
attributes 7-3

design rule constraints
capacitance 7-8
defined 4-3
fanout load 7-5
setting 7-3
transition time 7-4

design rule cost function 8-31
design rules

commands B-2
Design Vision

defined 1-8
designs

analyzing 9-7
checking consistency 9-2
copying 5-29
creating 5-28
current 5-4
defined 5-3
duplicate, checking for 5-16
editing 5-47

buses 5-47
cells 5-47
nets 5-44, 5-47
ports 5-45, 5-47

flat 5-3
hierarchical 5-3
linking 4-7, 5-19

listing
details 5-16
names 5-16

listing current 5-17
parent 5-3
preserving implementation 8-28
reading 2-21, 5-10, 5-14

.db format 5-16
HDL (analyze command) 5-10
HDL (elaborate command) 5-11
netlists 2-21
RTL 2-21

reference, changing 5-22
removing from memory 5-52
renaming 5-30
reporting attributes 8-30
saving 5-53, 5-54

default behavior 5-54
multiple 5-56
supported formats 5-53

translating 5-50
DesignWare

defined 1-7
DesignWare library

defined 1-7, 4-5
file extension 4-6
specifying 4-6, 4-10

DFT Compiler
defined 1-7

directory structure
bottom-up compile

figure 3-4
top-down compile

figure 3-3
disabled timing arc, compared with false path

7-19
disabling

false violation messages 9-12
timing paths

scan chains 9-12
disconnect_net command 5-47
dont_touch attribute 9-24, 9-26
IN-8

and dangling logic 9-14, 9-26
and timing analysis 8-29
reporting, designs 8-30
setting 8-28

drive characteristics
removing 6-15
setting

command to 6-14
example of 6-16

drive resistance, setting 6-15
drive strength

defining 6-13

E
elaborate command 2-21, 5-10, 5-14
endpoints, timing exceptions 7-17
examples of

ungrouping hierarchy 5-40
exit command 2-13
exiting Design Compiler 2-12
expressions

guidelines
HDL 3-30

F
false path

compared with disabled timing arc 7-19
defined 7-18
specifying 7-11, 7-18

false violation messages, disabling 9-12
fanout

specifying values of 6-18
fanout load

calculating 7-6
controlling 7-5
cost calculation 8-32
defined 7-5
removing attribute of 7-8

fanout load constraints 7-5

fanout_load attribute 7-5
feedback loop

breaking 9-15
identifying 9-15

file name extensions
conventions 3-2

filename log files 2-15
filename_log_file variable 2-16
files

command log file 2-15
filename log file 2-15
script 2-16

filter command 9-12
find command 9-12
flat design 5-3
flattening

critical path logic 8-52
flattening design 8-4
flip-flop

defined 3-15
inferring 3-16

full_case directive 3-25
functions

guidelines
HDL 3-31

G
gate-level optimization 8-6
get_attribute command 5-65, 9-23, 9-25
get_cells command 9-11, 9-12
get_designs command 9-12
get_license command 2-17
glue logic 3-6
group command 5-32, 8-52
group_path command 8-35

-critical_range option 8-49
features of 8-48

grouping
adding hierarchy levels 5-31
IN-9

H
HDL Compiler

defined 1-6
HDL design, reading

analyze command 5-10
elaborate command 5-11

help
accessing 2-13

hierarchical boundaries
wire load model 6-7

hierarchical cells
defined 5-5
identifying 9-12

hierarchical compile
See, top-down compile

hierarchical designs
defined 5-3

hierarchical pin timing constraints, preserving
5-44

hierarchical pins, preserving timing constraints
5-44

hierarchy
adding levels 5-31
changing 5-31
changing interactively 5-31
displaying 5-31
merging cells 5-46
removing levels 5-36, 5-39, 8-60

all 5-36
ungrouping automatically 5-40

high-effort compile 8-54
hlo_disable_datapath_optimization variable

8-62, 8-76
hold checks

default behavior 7-22
overriding default behavior 7-22, 7-24
timing arcs and 6-17

I
ideal clocks 7-13

identifiers
guidelines

HDL 3-28
identifying

black box cells 9-12
feedback loops 9-15
hierarchical cells 9-12
unmapped cells 9-11

if statement 3-23
incremental compile 8-55
infer_multibit compiler directive 3-18
infer_mux compiler directive 3-15
inferring registers 3-15
input arrival time

default 7-14
removing 7-14
reporting 7-14
specifying 7-14

instances
current 5-5
listing 5-24
reporting 5-24

interblock buffers 9-14
interface

graphical user interface 2-8
interface logic model

preserving as subdesign 8-29
top-down compile 8-9, 8-10

interfaces
dc_shell 2-8

is_black_box attribute 9-12
is_hierarchical attribute 9-12
is_unmapped attribute 9-11

L
latches

defined 3-15
inferring 3-15

leaf cell 5-5
libraries
IN-10

DesignWare 1-7, 4-5
link 4-4
list of 6-9
list values of 6-9, 6-17
listing

names 4-11
main 4-9
power consumption 4-5
reading 4-11
removing from memory 4-16
reporting contents 4-12
saving 4-16
specifying 2-20, 4-6

objects 4-12
symbol 4-5
synthetic 3-18
target 4-4
technology 4-3
timing values 4-5

library attributes C-5
library cell

specifying 5-50
library cell attributes C-5
library objects

defined 4-12
specifying 4-12

library registers
specifying 5-50

license_users command 2-17
licenses

checking out 2-17
listing 2-17
releasing 2-17
using 2-16
working with 2-16

link library
file extension 4-6
libraries

cell references 4-4
specifying 4-6
target library and 4-9

link_force_case variable 5-20
link_library variable 4-6, 5-19
list command 6-12
list_designs command 5-16
list_duplicate_designs command 5-16
list_instances command 5-24
list_libs command 4-11, 6-9
load_of command 9-24
log files

command log file 2-15
filename log file 2-15

logic-level optimization 8-3

M
main library 4-9
man pages

accessing 2-13
max_area attribute 7-26
max_capacitance attribute 7-8, 9-25
max_fanout attribute 7-5, 9-25
max_transition attribute 7-4, 9-25
maximum delay, calculating cost 8-34
maximum performance optimization 8-47
messages

control echoing to screen 5-68
disabling 9-12

.Milkyway format 5-9
reading 5-14

Milkyway format
saving 5-55

minimization
defined 8-42
enabling 8-42

minimum area optimization 8-56
minimum delay, calculating cost 8-37
minimum porosity, calculating cost 8-39
mixed compile strategy 8-19
modes

DB 2-7
IN-11

XG 2-7
Module Compiler

defined 1-7
modules

guidelines
HDL 3-33

multicycle path 7-22
multiple clock considerations 7-12
multiple instances of a design

resolving 8-20
multiple instances, resolving

compile command automatic uniquify 8-22
compile-once-don’t-touch method 8-25
ungroup method 8-27
uniquify method 8-22

multiplexers
inferring 3-15

HDL Compiler 3-15

N
name

changing net or port 5-57
naming conventions

file name extensions 3-2
library objects 4-12
signal name suffixes 3-30

naming translation 5-57
net attributes C-5
net capacitance

See, capacitance
net names

changing name rules 5-57
netlist

editing 5-47
reading 2-21

netlist reader 2-21
nets 5-6

connecting 5-47
creating 5-44, 5-47

disconnecting 5-47
heavily loaded, fixing 8-51
reporting 5-25

networks 5-6

O
operating conditions

defining 6-3
list of

current design 6-5
technology library 6-4

optimization
across hierarchical boundaries 8-59
architectural 8-2
Boolean 8-57
boundary 8-59
cost function 8-31
data paths 8-61
defined 2-2
gate level 8-6
gate-level 8-6
high-speed designs 8-43
how it works 9-3
incremental 8-55
invoking 8-40
logic-level 8-3
maximum performance 8-47
minimum area 8-56
random logic 8-41
structured logic 8-43
trials phase 9-3

optimization processes 8-2
output delay

default constraint 7-14
removing 7-14
reporting 7-14
specifying 7-14

output formats
supported 5-53
IN-12

P
partitioning

by compile technique 3-9
combinational logic 3-5
design reuse considerations 3-5
glue logic 3-6
merge resources 3-10
modules by design goals 3-8
modules with different goals 3-8
random logic 3-9
sharable resources 3-10
structural logic 3-9
user-defined resources 3-11

path delay
specifying 7-19

path groups
and delay cost 8-36
creating 8-35
defined 8-35
listing 8-35

paths
multicycle 7-22
specifying false 7-11
using absolute 5-27
using relative 5-25

pin attributes C-6
pins 5-6

library cell, specifying 4-12
relationship to ports 5-6

point-to-point exception
See, timing exception

porosity cost, calculating 8-39
port

names, changing 5-57
ports 5-5

capacitive load on
setting 6-17

creating 5-45, 5-47
deleting 5-47
listing

output ports 5-24

relationship to pins 5-6
reporting 5-24
setting drive characteristics of 6-14, 6-15
wire delays, preventing 9-15

Power Compiler
defined 1-7

preserved timing constraints in design
hierarchies 5-46

preserving subdesigns 8-28

Q
quit command 2-13
quitting Design Compiler 2-12

R
random logic optimization 8-41
read_db command 5-15
read_ddc command 5-15
read_file command 2-21, 4-11, 5-10, 5-14,

5-17
read_lib command 4-11
read_milkyway command 5-14
read_verilog command 2-21
read_vhdl command 2-21
reference attributes C-6
references

changing design 5-22
reporting 5-24
resolving 4-7, 5-19

references, using 5-7
register inference

D flip-flop 3-16
D latch 3-15
defined 3-15
edge expressions 3-16

register types
mixing 3-16

registers
inferring
IN-13

HDL Compiler 3-15
listing 5-25

remove_attribute command 7-5, 7-8, 7-9
remove_bus command 5-47
remove_cell command 5-47
remove_clock command 7-13
remove_constraint command 7-27
remove_design command 4-16, 5-52
remove_input_delay command 7-14
remove_license command 2-17
remove_multibit command 3-18
remove_net command 5-47
remove_output_delay command 7-14
remove_port command 5-47
remove_wire_load_model command 6-13
removing levels of hierarchy 5-35
rename_design command 5-30
report_attribute command 5-65
report_auto_ungroup 5-41
report_cell command 9-25
report_clock command 5-25

purpose 7-13
-skew option 7-14

report_compile_options command 8-5
report_constraint command 9-16, 9-19

-all_violators option
report violations 9-19

-verbose option 9-18
report_delay_calculation command 9-9
report_design command 6-5, 8-30
report_hierarchy command 5-31
report_lib command 4-12, 6-4, 6-9, 6-17
report_net command 5-25
report_path_group command 8-35
report_port command 5-24, 7-14
report_reference command 5-24
report_resources command 8-73
report_timing command

feedback loops 9-15

wire load information 6-13
report_timing_requirements command

delay requirements 7-17
-ignored option 7-17
timing exceptions 7-18

reports
analyzing design 9-7
analyzing timing 9-8
check_design command 9-2
clock definition 7-13
delay calculation 9-9
library contents 4-12
operating condition 6-4
operating conditions 6-5
report_hierarchy command 5-31
script file A-27, A-38
timing exceptions 7-17

ignored 7-17
timing path 9-9
wire load model

example 6-10
reset_path command 7-19, 7-24
resistance

output driver
defining 6-13

See also, drive characteristics
resolving multiple instances of a design 8-20
resource allocation

area driven 8-58
timing driven 8-58

resources
shareable 3-10
user-defined

partitioning 3-11
routability cost

See, porosity cost
RTL, reading 2-21

S
script files 2-16

adding comments 2-16
IN-14

compile A-16
executing 2-16
generating 5-66
report A-27, A-38
return values 2-16

search path
for libraries 4-10

search_path variable 4-10
semiconductor vendor, selecting 4-2
sequential device, initialize or control state

3-16
set_clock_latency command

setting margin of error 7-13
set_clock_uncertainty command 7-10
set_cost_priority command 8-32
set_critical_range command 8-49
set_disable_timing command 9-13
set_dont_touch command 8-25, 8-28
set_drive command 6-14, 6-15, 6-16
set_driving_cell command 6-13, 6-14, 6-16
set_false_path command 7-18

undoing 7-19
uses for 7-18

set_fanout_load command 6-18, 7-7
set_flatten command 8-4

-minimize option 8-42
-phase option 8-42

set_input_delay command 7-11, 7-14
set_input_transition command 6-14
set_load command 6-17
set_max_area command 7-26
set_max_delay command

for combinational paths 7-16
for timing exceptions 7-19
reset 7-19

set_max_fanout command 7-7
set_max_transition command 7-4
set_min_delay command

for combinational paths 7-16
for timing exceptions 7-19

reset 7-19
set_multicycle_path command 7-22

default behavior 7-22
reset 7-24

set_output_delay command 7-11, 7-14
set_resistance command 9-15
set_structure command 8-3, 8-57
set_ultra_optimization command 8-76
set_ungroup command 5-39, 8-60
set_wire_load command 6-7, 6-12
setup checks

default behavior 7-22
overriding default behavior 7-22, 7-23
timing arcs and 6-17

setup files
design example A-12
.synopsys_dc.setup file 2-9

sh_command_log_file variable 2-15
signal_type attribute 9-13
signals, edge detection 3-16
slack

critical negative 8-36
total negative 8-36
worst negative 8-34

specifying
clock

network delay 7-13
period 7-11
waveform 7-11

libraries
DesignWare 4-10
link 4-6
symbol 4-6
target 4-6

library objects 4-12
maximum transition time 7-4
timing exceptions

false path 7-18
multicycle path 7-22
path delay 7-19

timing requirements
IN-15

combinational paths 7-16
input ports 7-14
output ports 7-14

wire load mode 6-12
wire load model 6-12

startpoints, timing exceptions 7-17
state machine design 3-21
statements

’define 3-26
case 3-24
constant 3-26
if 3-23

structured logic optimization 8-43
structuring design

optimization 8-3
subdesigns 5-3

preserving 8-28
symbol library

defined 4-5
file extension 4-6
search path for 4-10
specifying 4-6

symbol_library variable 4-6
sync_set_reset directive 3-17
synchronous designs

clock period 7-11
.synopsys_dc.setup file 2-9

sample 2-10
synthesis

defined 2-2
synthesis design flow

figure 2-19
synthetic libraries 3-18
synthetic_library variable 4-6

T
target library

definition 4-4
file extension 4-6
link library and 4-9

specifying 4-6
target_library variable 4-6
technology library

creating 4-3
definition 4-3
required format 4-3
search path for 4-10

timing
analyzing 9-8
reports 7-17

timing arcs
hold checks and 6-17
setup checks and 6-17

timing constraints, commands to set 7-10
timing exception

commands
listing 7-18
order of precedence 7-24, 7-25

defined 7-17
ignored, list of 7-17
reporting 7-17
valid endpoints 7-17
valid startpoints 7-17

timing path, report 9-9
timing values

link libraries 4-5
timing violations

correcting 9-24
scan chain 9-12

top-down compile 8-9
advantages 8-10
directory structure

figure 3-3
total negative slack, defined 8-36
transition time

cost calculation 8-32
defined 7-4
setting 7-4
specifying

maximum 7-4
translate command 5-50, 5-51
IN-16

translating designs
procedure for 5-50
restrictions 5-51

U
ungroup command 5-36, 8-27
ungroup design

compile option 5-39, 8-60
ungroup hierarchy

examples 5-40
ungroup_preserve_constraints variable 5-44
ungrouping

automatically
cell count-based 5-41
compile_auto_ungroup_area_num_cells

5-41
compile_auto_ungroup_count_leaf_cells

5-41, 5-42, 8-46
compile_auto_ungroup_delay_num_cells

5-42, 8-46
delay-based 5-42

automatically during compile 5-40, 8-54
automatically during compile_ultra 8-45
removing hierarchy levels 5-36, 5-39, 8-60

uniquify command 8-22
uniquify method 8-21

V
variables

auto_ungroup_preserve_constraints 5-43,
8-47

command_log_file 2-15
compile_assume_fully_decoded_three_stat

e_busses 5-52
compile_auto_ungroup_area_num_cells

5-41, 5-43
compile_auto_ungroup_count_leaf_cells

5-41, 5-42, 8-46
compile_auto_ungroup_delay_num_cells

5-42, 5-43, 8-46

compile_autoungroup_override_wlm 5-43,
8-46

compile_fix_cell_degradation 8-34
compile_log_format 9-4
compile_new_boolean_structure 8-57
current_design 5-17
current_instance 5-26
filename_log_file 2-16
hlo_disable_datapath_optimization 8-62,

8-76
link_force_case 5-20
link_library 4-6, 5-19
search_path 4-10
sh_command_log_file variable 2-15
symbol_library 4-6
synthetic_library 4-6
target_library 4-6
ungroup_preserve_constraints 5-44

Verilog
expressions 3-30
functions 3-31
identifiers 3-28
modules 3-33

VHDL
expressions 3-30
functions 3-31
identifiers 3-28
modules 3-33

virtual clock
creating 7-13
defined 7-13

W
wire delays, on ports 9-15
wire load

defining 6-5
wire load mode

default 6-12
reporting 6-13
specifying 6-12

wire load model
IN-17

automatic selection
described 6-11
disabling 6-12

choosing 6-12
default 6-11
hierarchical boundaries 6-7
list of

technology libraries 6-9
removing 6-13
report example 6-10
reporting 6-13
specifying 6-12

wire_load_selection library function 6-11
worst negative slack, defined 8-34
write command 5-54
write_lib command 4-16
write_milkyway command 5-55
write_script command 5-66

X
XG mode 2-7

starting Design Compiler 2-11
IN-18

	Preface
	Introduction to Design Compiler
	Design Compiler and the Design Flow
	Design Compiler Family
	DC Expert
	DC Ultra
	HDL Compiler Tools
	DesignWare Library
	DFT Compiler
	Module Compiler
	Power Compiler
	Design Vision
	Design Compiler FPGA

	Design Compiler Basics
	The High-Level Design Flow
	Running Design Compiler
	Design Compiler Modes
	Design Compiler Interfaces
	Setup Files
	Starting Design Compiler
	Exiting Design Compiler
	Getting Command Help
	Using Command Log Files
	Using the Filename Log File
	Using Script Files
	Working with Licenses
	Listing the Licenses in Use
	Getting Licenses
	Releasing Licenses

	Following the Basic Synthesis Flow
	A Design Compiler Session Example

	Preparing Design Files for Synthesis
	Managing the Design Data
	Controlling the Design Data
	Organizing the Design Data

	Partitioning for Synthesis
	Partitioning for Design Reuse
	Keeping Related Combinational Logic Together
	Registering Block Outputs
	Partitioning by Design Goal
	Partitioning by Compile Technique
	Keeping Sharable Resources Together
	Keeping User-Defined Resources With the Logic They Drive
	Isolating Special Functions

	HDL Coding for Synthesis
	Writing Technology-Independent HDL
	Inferring Components
	Using Synthetic Libraries
	Designing State Machines

	Using HDL Constructs
	General HDL Constructs
	Using Verilog Macro Definitions
	Using VHDL Port Definitions

	Writing Effective Code
	Guidelines for Identifiers
	Guidelines for Expressions
	Guidelines for Functions
	Guidelines for Modules

	Working With Libraries
	Selecting a Semiconductor Vendor
	Understanding the Library Requirements
	Technology Libraries
	Symbol Libraries
	DesignWare Libraries

	Specifying Libraries
	Specifying Technology Libraries
	Target Library
	Link Library

	Specifying DesignWare Libraries
	Specifying a Library Search Path

	Loading Libraries
	Listing Libraries
	Reporting Library Contents
	Specifying Library Objects
	Directing Library Cell Usage
	Excluding Cells From the Target Library
	Specifying Cell Preferences

	Removing Libraries From Memory
	Saving Libraries

	Working With Designs in Memory
	Design Terminology
	About Designs
	Flat Designs
	Hierarchical Designs

	Design Objects
	Relationship Between Designs, Instances, and References
	Using Reference Objects

	Design Database Formats
	Reading Designs
	Commands for Reading Design Files
	Using the analyze and elaborate Commands
	Using the read_file Command

	Using the read_milkyway command
	Reading HDL Designs
	Reading .ddc Files
	Reading .db Files

	Listing Designs in Memory
	Setting the Current Design
	Using the current_design Command

	Linking Designs
	Locating Designs by Using a Search Path
	Changing Design References

	Listing Design Objects
	Specifying Design Objects
	Using a Relative Path
	Using an Absolute Path

	Creating Designs
	Copying Designs
	Renaming Designs
	Changing the Design Hierarchy
	Adding Levels of Hierarchy
	Grouping Cells Into Subdesigns
	Grouping Related Components Into Subdesigns

	Removing Levels of Hierarchy
	Ungrouping Hierarchies Before Optimization
	Ungrouping Hierarchies During Optimization
	Preserving Hierarchical Pin Timing Constraints During Ungrouping

	Merging Cells From Different Subdesigns

	Editing Designs
	Translating Designs From One Technology to Another
	Procedure to Translate Designs
	Restrictions on Translating Between Technologies

	Removing Designs From Memory
	Saving Designs
	Commands to Save Design Files
	Using the write Command
	Using the write_milkyway Command

	Saving Designs in .ddc Format
	Saving Designs in the .db Format
	Converting From .db Format to .ddc Format
	Ensuring Name Consistency Between the Design Database and the Netlist
	Naming Rules Section of the .synopsys_dc.setup File
	Using the define_name_rules -map Command
	Resolving Naming Problems in the Flow

	Working With Attributes
	Setting Attribute Values
	Using an Attribute-Specific Command
	Using the set_attribute Command

	Viewing Attribute Values
	Saving Attribute Values
	Defining Attributes
	Removing Attributes
	The Object Search Order

	Defining the Design Environment
	Defining the Operating Conditions
	Determining Available Operating Condition Options
	Specifying Operating Conditions

	Defining Wire Load Models
	Hierarchical Wire Load Models
	Determining Available Wire Load Models
	Specifying Wire Load Models and Modes

	Modeling the System Interface
	Defining Drive Characteristics for Input Ports
	The set_driving_cell Command
	The set_drive and set_input_transition Commands

	Defining Loads on Input and Output Ports
	Defining Fanout Loads on Output Ports

	Defining Design Constraints
	Setting Design Rule Constraints
	Setting Transition Time Constraints
	Setting Fanout Load Constraints
	Setting Capacitance Constraints

	Setting Optimization Constraints
	Setting Timing Constraints
	Defining a Clock
	Specifying I/O Timing Requirements
	Specifying Combinational Path Delay Requirements
	Specifying Timing Exceptions

	Setting Area Constraints

	Verifying the Precompiled Design

	Optimizing the Design
	The Optimization Process
	Architectural Optimization
	Logic-Level Optimization
	Gate-Level Optimization

	Selecting and Using a Compile Strategy
	Top-Down Compile
	Bottom-Up Compile
	Mixed Compile Strategy

	Resolving Multiple Instances of a Design Reference
	Uniquify Method
	Compile-Once-Don’t-Touch Method
	Ungroup Method

	Preserving Subdesigns
	Understanding the Compile Cost Function
	Calculating Transition Time Cost
	Calculating Fanout Cost
	Calculating Capacitance Cost
	Calculating Cell Degradation Cost
	Calculating Maximum Delay Cost
	Worst Negative Slack Method
	Critical Range Negative Slack Method

	Calculating Minimum Delay Cost
	Calculating Maximum Power Cost
	Calculating Maximum Area Cost
	Calculating Minimum Porosity Cost

	Performing Design Exploration
	Performing Design Implementation
	Optimizing Random Logic
	Optimizing Structured Logic
	Optimizing High-Performance Designs
	Automatic Ungrouping Using the compile_ultra command

	Optimizing for Maximum Performance
	Creating Path Groups
	Fixing Heavily Loaded Nets
	Flattening Logic on the Critical Path
	Automatically Ungrouping Hierarchies on the Critical Path
	Performing a High-Effort Compile
	Performing a High-Effort Incremental Compile

	Optimizing for Minimum Area
	Disabling Total Negative Slack Optimization
	Enabling Boolean Optimization
	Managing Resource Selection
	Using Flattening
	Optimizing Across Hierarchical Boundaries

	Optimizing Data Paths

	Using DC Ultra Datapath Optimization
	Datapath Extraction
	Two Different Datapath Optimization Methods
	Methodology Flow
	Datapath Report
	Commands Specific to DC Ultra Datapath Optimization

	Analyzing and Resolving Design Problems
	Checking for Design Consistency
	Analyzing Your Design During Optimization
	Customizing the Compile Log
	Saving Intermediate Design Databases

	Analyzing Design Problems
	Analyzing Timing Problems
	Resolving Specific Problems
	Analyzing Cell Delays
	Finding Unmapped Cells
	Finding Black Box Cells
	Finding Hierarchical Cells
	Disabling Reporting of Scan Chain Violations
	Insulating Interblock Loading
	Preserving Dangling Logic
	Preventing Wire Delays on Ports
	Breaking a Feedback Loop
	Analyzing Buffer Problems
	Understanding Buffer Insertion
	Correcting for Missing Buffers
	Correcting for Extra Buffers
	Correcting for Hanging Buffers
	Correcting Modified Buffer Networks

	Design Example
	Design Description
	Setup File
	Default Constraints File
	Compile Scripts

	Basic Commands
	Commands for Defining Design Rules
	Commands for Defining Design Environments
	Commands for Setting Design Constraints
	Commands for Analyzing and Resolving Design Problems

	Predefined Attributes
	Glossary
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

